DOI QR코드

DOI QR Code

Long-Term Trend of Surface Wind Speed in Korea: Physical and Statistical Homogenizations

한반도 지상 풍속의 장기 추세 추정: 관측 자료의 물리적 및 통계적 보정

  • Choi, Yeong-Ju (School of Earth and Environmental Sciences, Seoul National University) ;
  • Park, Chang-Hyun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Hye-Jin (School of Earth and Environmental Sciences, Seoul National University)
  • 최영주 (서울대학교 지구환경과학부) ;
  • 박창현 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부) ;
  • 김혜진 (서울대학교 지구환경과학부)
  • Received : 2021.08.17
  • Accepted : 2021.11.05
  • Published : 2021.12.31

Abstract

The long-term trend of surface wind speed in Korea is estimated by correcting wind measurements at 29 KMA weather stations from 1985 to 2019 with physical and statistical homogenization. The anemometer height changes at each station are first adjusted by applying physical homogenization using the power-law wind profile. The statistical homogenization is then applied to the adjusted data. A standard normal homogeneity test (SNHT) is particularly utilized. Approximately 40% of inhomogeneities detected by the SNHT match with the sea-level-height change of each station, indicating that an SNHT is an effective technique for reconciling data inhomogeneity. The long-term trends are compared with homogenized data. Statistically significant negative trends are observed along the coast, while insignificant trends are dominant inland. The mean trend, averaged over all stations, is -0.03 ± 0.07 m s-1 decade-1. This insignificant trend is due to a trend change across 2001. A decreasing trend of -0.10 m s-1 decade-1 reverses to an increasing trend of 0.03 m s-1 decade-1 from 2001. This trend change is consistent with mid-latitude wind change in the Northern hemisphere, indicating that the long-term trend of surface wind speed in Korea is partly determined by large-scale atmospheric circulation.

Keywords

Acknowledgement

본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사를 드립니다. 이 연구는 2021년 해양수산부 재원으로 해양수산과학기술진흥원(과학기술기반 해역이용영향평가 기술개발, 20210427)의 지원을 받아 수행하였습니다.

References

  1. Alexandersson, H., 1986: A homogeneity test applied to precipitation data. J. Climatol., 6, 661-675. https://doi.org/10.1002/joc.3370060607
  2. Azorin-Molina, C., S. Rehman, J. A. Guijarro, T. R. McVicar, L. Minola, D. Chen, and S. M. Vicente-Serrano, 2018a: Recent trends in wind speed across Saudi Arabia, 1978-2013: a break in the stilling. Int. J. Climatol., 38, e966-e984, doi:10.1002/joc.5423.
  3. Azorin-Molina, C., C., J. Asin, T. R. McVicar, L. Minola, J. I. Lopez- Moreno, S. M. Vicente-Serrano, and D. Chen, 2018b: Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement. Atmos. Res., 203, 175-188, doi:10.1016/j.atmosres.2017.12.010.
  4. Buishand, T. A., 1982: Some methods for testing the homogeneity of rainfall records. J. Hydrology, 58, 11-27. https://doi.org/10.1016/0022-1694(82)90066-X
  5. Chang, S. Y., and P. Perron, 2018: A comparison of alternative methods to construct confidence intervals for the estimate of a break date in linear regression models. Econom. Rev., 37, 577-601, doi:10.1080/07474938.2015.1122142.
  6. Chen, X., S. Jeong, H. Park, J. Kim, and C.-R. Park, 2020: Urbanization has stronger impacts than regional climate change on wind stilling: a lesson from South Korea. Environ. Res. Lett., 15, 054016, doi:10.1088/1748-9326/ab7e51.
  7. Choi, Y.-J., C.-H. Park, S.-W. Son, J.-W. Lee, and D.-C. Hong, 2021: Long-term trend of surface wind speed in Korea: Anemometer height adjustment. Atmosphere, 31, 101-112, doi:10.14191/Atmos.2021.31.1.101 (in Korean with English abstract).
  8. Guijarro, J. A., 2018: Homogenization of climatic series with Climatol. Tech. Rep., State Meteorological Agency (AEMET), Balearic Islands Office, Spain, 20 pp.
  9. Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, 147, 7.
  10. Khaliq, M. N., and T. B. M. J. Ouarda, 2007: On the critical values of the standard normal homogeneity test (SNHT). Int. J. Climatol., 27, 681-687. https://doi.org/10.1002/joc.1438
  11. Kim, D., and P. Perron, 2009: Assessing the relative power of structural break tests using a framework based on the approximate Bahadur slope. J. Econom., 149, 26-51. https://doi.org/10.1016/j.jeconom.2008.10.010
  12. Kim, H.-J., and S.-W. Son, 2020: Recent Eurasian winter temperature change and its association with Arctic sea-ice loss. Polar Res., 39, 3363, doi:10.33265/polar.v39.3363.
  13. Kim, H. U., B. J. Kim, H.-G. Nam, J. H. Jung, and J.-K. Shim, 2020: Climatological spatio-temporal variation of strong wind in Korea. Atmosphere, 30, 47-57, doi:10.14191/Atmos.2020.30.1.047 (in Korean with English abstract).
  14. Kim, J., and K. Paik, 2015: Recent recovery of surface wind speed after decadal decrease: a focus on South Korea. Climate Dyn., 45, 1699-1712, doi:10.1007/s00382-015-2546-9.
  15. Martinez, M. D., C. Serra, A. Burgueno, and X. Lana, 2010: Time trends of daily maximum and minimum temperatures in Catalonia (ne Spain) for the period 1975-2004. Int. J. Climatol., 30, 267-290, doi:10.1002/joc.1884.
  16. McVicar, T. R., and Coauthers, 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416, 182-205, doi:10.1016/j.jhydrol.2011.10.024.
  17. Perron, P. and T. Yabu, 2009: Testing for shifts in trend with an integrated or stationary noise component. J. Bus. Econ. Stat., 27, 369-396. https://doi.org/10.1198/jbes.2009.07268
  18. Peterson, E. W., and J. P. Hennessey Jr., 1978: On the use of power laws for estimates of wind power potential. J. Appl. Meteorol., 17, 390-394. https://doi.org/10.1175/1520-0450(1978)017<0390:OTUOPL>2.0.CO;2
  19. Pettitt, A. N., 1979: A non-parametric approach to the change-point problem. J. Roy. Statist. Soc: Series C (Appl. Statist.), 28, 126-135. https://doi.org/10.2307/2346729
  20. Paulhus, J. L. H., and M. A. Kohler, 1952: Interpolation of missing precipitation records. Mon. Wea. Rev., 80, 129-133. https://doi.org/10.1175/1520-0493(1952)080<0129:IOMPR>2.0.CO;2
  21. Roderick, M. L., L. D. Rotstayn, G. D. Farquhar, and M. T. Hobbins, 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34, L17403. https://doi.org/10.1029/2007GL031166
  22. Seo, J., D.-S. R. Park, J. Y. Kim, D. Youn, Y. B. Lim, and Y. Kim, 2018: Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999~2016) in Seoul, South Korea. Atmos. Chem. Phys., 18, 16121-16137, doi:10.5194/acp-18-16121-2018.
  23. Vautard, R., J. Cattiaux, P. Yiou, J.-N. Thepaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756-761, doi:10.1038/ngeo979.
  24. Venema, V., and Coauthors, 2018: Guidance on the homogenization of climate station data. EarthArXiv, 83 pp, doi:10.31223/osf.io/8qzrf.
  25. Von Neumann, J., 1941: Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Statist., 12, 367-395. https://doi.org/10.1214/aoms/1177731677
  26. Wan, H., X. L. Wang, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 1209-1225, doi:10.1175/2009JCLI3200.1.
  27. Wu, J., J. Zha, D. Zhao, and Q. Yang, 2018: Changes in terrestrial near-surface wind speed and their possible causes: an overview. Climate Dyn., 51, 2039-2078, doi:10.1007/s00382-017-3997-y.
  28. Zeng, Z., and Coauthors, 2019: A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change, 9, 979-985, doi:10.1038/s41558-019-0622-6.
  29. Zhang, Z., and K. Wang, 2020: Stilling and recovery of the surface wind speed based on observation, reanalysis, and geostrophic wind theory over China from 1960 to 2017. J. Climate, 33, 3989-4008, doi:10.1175/JCLID-19-0281.1.