DOI QR코드

DOI QR Code

단일광자 검출기 기술개발 동향

Single Photon Detectors Technologies Development Trends for Quantum Information

  • 발행 : 2020.08.01

초록

Single photon detector technologies have emerged as powerful tools in optical quantum information applications such as quantum communication, quantum information, and integrated quantum photonics. Owing to significant attempts in the previous decade at improving photon-counting detectors, several single photon detectors with high efficiency and low noise have been realized within the optical wavelength regime. In this paper, we provide an overview of current studies on single photon detectors operating at wavelengths from the ultraviolet to the infrared. In addition, we discuss applications of single photon detector technologies in quantum communication and integrated quantum photonics.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)[(No. NRF-2017R1E1A1A01075263) and IITP (No. 1711103293 and 1711117087)].

참고문헌

  1. A. Einstein, "Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt," Annalen der Physik, vol. 322, no. 6, 1905, pp. 132-148. https://doi.org/10.1002/andp.19053220607
  2. S. K. Liao et al., "Satellite-relayed intercontinental quantum network," Phys. Rev. Lett., vol. 120, no. 3, 2018, Article no. 030501.
  3. F. Arute et al., "Quantum supremacy using a programmable superconducting processor," Nature, vol. 574, 2019, pp. 505-510. https://doi.org/10.1038/s41586-019-1666-5
  4. A. Divochiy et al., "Superconducting nanowire photonnumber-resolving de tec tor at telecommunication wavelengths," Nature Photon,. vol. 2, 2008, pp. 302-306. https://doi.org/10.1038/nphoton.2008.51
  5. E. Pomarico et al., "Room temperature photon number resolving detector for infared wavelengths," Opt. Express, vol. 18, no. 10, 2010, pp. 10750-10759. https://doi.org/10.1364/OE.18.010750
  6. B. Calkins et al., "High quantum-efficiency photon-numberresolving detector for photonic on-chip information processing," Opt. Express, vol. 21, 2013, pp. 22657-22670. https://doi.org/10.1364/OE.21.022657
  7. G. A. Morton, "Photomultiplier for scintillation counting," RCA Rev., vol. 10, 1949, pp. 525-553.
  8. K. Ekert., "Quantum Cryptography Based on Bell's Theorem," Phys. Rev. Lett., vol. 67, no. 6, 1991, pp. 661-663. https://doi.org/10.1103/PhysRevLett.67.661
  9. C. H. Nennett et al., "Experimental quantum cryptography," J. Cryptology, vol. 5, no. 3, 1992, pp. 3-28. https://doi.org/10.1007/BF00191318
  10. C. A. Armiento et al., "Impact ionization in (100)-, (110)-, and (111)-oriented InP avalanche photodiodes," Appl. Phys. Lett., vol. 43, no. 2, 1983, pp. 198-200. https://doi.org/10.1063/1.94279
  11. S. G. Choi et al., "3-Dimensional LADAR Optical Detector Development in Geiger Mode Operation," Korean J. Optics Photonics, vol. 24, no. 4, 2013, pp. 176-183. https://doi.org/10.3807/KJOP.2013.24.4.176
  12. S. Cova et al., "Avalanche photodiodes and quenching circuits for single-photon detection," Appli. Opt., vol. 35, no. 12, 1996, pp. 1956-1976. https://doi.org/10.1364/AO.35.001956
  13. S. Johnson et al., "Analysis of Geiger-mode APD laser radars," Proc. SPIE, vol. 5086, 2003, pp. 359-368.
  14. G. N. Gol'tsman et al., "Picosecond superconducting singlephoton optical detector," Appl. Phy. Lett., vol. 79, 2001, Article no. 705.
  15. C. M. Natarajan et al., "Superconducting nanowire singlephoton detectors: physics and applications," Supercond. Sci. Technol. 25, 2012, p. 063001. https://doi.org/10.1088/0953-2048/25/6/063001
  16. W. H. P. Pernice et al., "High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits," Nature Commun., vol. 3, 2012, Article no. 1325.
  17. M. K. Akhlaghi et al., "Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation," Nature Commun., vol. 6, 2015, Article no. 8233.
  18. https://www.picoquant.com/products/category/photoncounting-detectors/pma-hybrid-series-hybrid-photomultiplierdetector-assembly#specification
  19. https://www.hamamatsu.com/resources/pdf/etd/NIRPMT_APPLI_TPMO1040E.pdf
  20. https://marketing.idquantique.com/acton/attachment/11868/f-0238/1/-/-/-/-/ID120_Brochure.pdf
  21. https://marketing.idquantique.com/acton/attachment/11868/f-0234/1/-/-/-/-/ID230_Brochure.pdf
  22. A. E. Lita et al., "Counting near-infrared single photons with 95% efficiency," Opt. Express, vol. 16, 2008, pp. 3032-3040. https://doi.org/10.1364/OE.16.003032
  23. https://singlequantum.com/products/single-quantum-eos/
  24. H. Chun et al., "Handheld free space quantum key distribution with dynamic motion compensation," Opt. Express, vol. 25, 2017, pp. 6784-6795. https://doi.org/10.1364/OE.25.006784
  25. G. Ribordy et al., "Automated plug & play quantum key distribution," Electron Lett. vol. 34, 1998, pp. 2116-2117. https://doi.org/10.1049/el:19981473
  26. R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Quantum key distribution over a 48km optical fibre network," J. Mod. Opt., vol. 47, 2000, pp. 533-547. https://doi.org/10.1080/09500340008244058
  27. D. Stucki et al.,"Quantum key distribution over 67km with a plug&play system," New J. Phys., vol. 4, 2002, Article no. 41.
  28. C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122km of standard telecom fiber," Appl. Phys. Lett., vol. 84, 2004, Article no. 3762.
  29. W.-Y. Hwang, "Quantum Key Distribution with High Loss: Toward Global Secure Communication," Phys. Rev. Lett., vol. 91, 2003, Article no. 057901.
  30. H.-K. Lo, X. Ma, and K. Chen,"Decoy State Quantum Key Distribution," Phys. Rev. Lett., vol. 94, 2005, Article no. 230504.
  31. C. Z. Peng et al., "Experimental long-distance decoystate quantum key distribution based on polarization encoding," Phys. Rev. Lett., vol. 98, 2007, Article no. 010505.
  32. N. Namekata et al., "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett., vol. 91, 2007, Article no. 011112.
  33. Z. L. Yuan et al., "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett., vol. 92, 2008, Article no. 201104.
  34. L. C. Comandar et al., "Gigahertz-gated InGaAs-InP singlephoton detector with detection efficiency exceeding 55% at 1550nm," J. Appl. Phys., vol. 117, 2015, Article no. 083109.
  35. Z. Yuan et al., "10-Mb/s quantum key distribution," J. Lightwave Technol., vol. 36, 2018, pp. 3427-3433. https://doi.org/10.1109/JLT.2018.2843136
  36. C. H. Bennett and G. Brassard, "Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working!," ACM Sigact News, vol. 20, 1989, pp. 78-80. https://doi.org/10.1145/74074.74087
  37. R. J. Hughes et al., "Practical free-space quantum key distribution over 10km in daylight and at night," New J. Phys., vol. 4, 2002, Article no. 43.
  38. T. Schmitt-Manderbach et al., "Experimental demonstration of free-space decoy-state quantum key distribution over 144km," Phys. Rev. Lett., vol. 98, 2007, Article no. 010504.
  39. S. Nauerth et al., "Air-to-ground quantum communication," Nature Photon., vol. 7, 2013, pp. 382-386. https://doi.org/10.1038/nphoton.2013.46
  40. S.-K. Liao et al., "Satellite-to-ground quantum key distribution," Nature, vol. 549, 2017, pp. 43-47. https://doi.org/10.1038/nature23655
  41. S.-K. Liao et al., , "Satellite-relayed intercontinental quantum network," Phys. Rev. Lett., vol. 120, 2018, Article no. 030501.
  42. I. Khan et al., "Satellite-Based QKD," Opt. Photon. News, vol. 29, 2018, pp. 26-33.
  43. S. Liao et al., "Long-distance free-space quantum key distribution in daylight towards inter-satellite communication," Nature Photon., vol. 11, 2017, pp. 509-513. https://doi.org/10.1038/nphoton.2017.116
  44. H. Takesue et al., "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photon., vol. 1, no. 6, 2007, pp. 343-348. https://doi.org/10.1038/nphoton.2007.75
  45. M. Sasaki et al., "Field test of quantum key distribution in the Tokyo QKD Network," Opt. Exp., vol. 19, no. 11, 2011, pp. 10387-10409.
  46. H. Shibata, T. Honjo, and K. Shimizu, "Quantum key distribution over a 72dB channel loss using ultralow dark count superconducting single-photon detectors," Opt. Lett., vol.39, no.17, 2014, pp. 5078-5081. https://doi.org/10.1364/OL.39.005078
  47. Y.-L. Tang et al., "Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network," Phys. Rev. X, vol. 6, no. 1, 2016, Article no. 011024.
  48. M. Lucamarini et al., "Overcoming the rate-distance limit of quantum key distribution without quantum repeaters," Nature, vol. 557, 2018, pp. 400-403. https://doi.org/10.1038/s41586-018-0066-6
  49. J.-P. Chen et al.,"Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509km," Phys. Rev. Lett., vol. 124, 2020, Article no. 070501.
  50. G. Reithmaier et al., "On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors," Scientific Reports, vol. 3, 2013, Article no. 1901.
  51. E. Knillm R, Laflamme, and G. J. Milburn, "A cheme for efficient quantum computation with linear optics," Nature, vol. 409, 2001, pp. 46-52. https://doi.org/10.1038/35051009