Acknowledgement
We sincerely thank Prof. Seungwon Shin for his detailed and valuable comments on the earlier version of the draft.
References
- J. Poon and T. Dryja, The bitcoin lightning network: Scalable offchain instant payments, 2015, available at https://lightning.network/lightning-network-paper.pdf.
- J. Poon and V. Buterin, Plasma: Scalable autonomous smart contracts, White paper, 2017, available at https://plasma.io/plasma.pdf.
- S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2009, available at https://bitcoin.org/bitcoin.pdf.
- Y. Gilad et al., Algorand: Scaling byzantine agreements for cryptocurrencies, in Proc. Symp. Oper. Syst. Principles (Shanghai China), 2017, pp. 51-68.
- L. Harn, Group-oriented (t, n) threshold digital signature scheme and digital multisignature, IEE Proc. Comput. Digital Techn. 140 (1994), 307-314. https://doi.org/10.1049/ip-cdt:19941293
- K. Ohta and T. Okamoto, Multi-signature schemes secure against active insider attacks, IEICE Trans. Fund. Electron. Commun. Comput. Sci. E82-A (1999), 21-31.
- L. Lamport, R. Shostak, and M. Pease, The byzantine generals problem, ACM Trans. Program. Lang. Syst. 4 (1982), 382-401. https://doi.org/10.1145/357172.357176
- M. Castro and B. Liskov, Practical byzantine fault tolerance, USENIX OSDI 99 (1999), 173-186.
- J. Kwon, Tendermint: Consensus without mining, 2014, available at http://tendermint.com/docs/tendermint{_}v04.pdf.
- J. Liu et al., Scalable byzantine consensus via hardware-assisted secret sharing, IEEE Trans. Comput. 68 (2018), 139-151. https://doi.org/10.1109/tc.2018.2860009
- G. S. Veronese et al., Efficient byzantine fault-tolerance, IEEE Trans. Comput. 62 (2013), 16-30. https://doi.org/10.1109/TC.2011.221
- M. Yin et al., Hotstuff: Bft consensus in the lens of blockchain, arXiv preprint, 2018, arXiv:1803.05069.
- Y. Yang, Linbft: Linear-communication byzantine fault tolerance for public blockchains, arXiv preprint, 2018, arXiv:1807.01829.
- P. Schindler, A. Judmayer, and E. R. Weippl, Hydrand: Efficient continuous distributed randomness, in Proc. IEEE Symp. Security Privacy (San Francisco, CA, USA), May 2020, pp. 73-89.
- S. Bano et al., Consensus in the age of blockchains, arXiv preprint, 2017, arXiv:1711.03936.
- Zilliqa team, The Zilliqa technical whitepaper, 2017, available at http://zilliqa.com.
- L. Lamport, Password authentication with insecure communication, Commun. ACM 24 (1981), 770-772. https://doi.org/10.1145/358790.358797
- G. Maxwell et al., Simple schnorr multi-signatures with applications to bitcoin, Designs, Codes Cryptography 87 (2019), 2139-2164. https://doi.org/10.1007/s10623-019-00608-x
- C. Li, T. Hwang, and N. Lee, Threshold-multi- signature schemes where suspected forgery implies traceability of adver- sarial shareholders, in Proc. Adv. Cryptol.-EUROCRYPT (Perugia, Italy), May 1994, pp. 194-204.
- T. Ristenpart and S. Yilek, The power of proofs-of-possession: Securing multiparty signatures against rogue-key attacks, in Proc. Adv. Cryptol.-EUROCRYPT (Barcelona, Spain), May 2007, pp. 228-245.
- D. Boneh et al., Aggregate and verifiably encrypted signatures from bilinear maps, in Proc. Adv. Cryptol.-EUROCRYPT (Warsaw, Poland), May 2003, pp. 416-432.
- A. Boldyreva, Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme, in Proc. Public Key Cryptography-PKC (Miami, FL, USA), Jan. 2003, pp. 31-46.
- D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing, J. Cryptol. 17 (2004), 297-319. https://doi.org/10.1007/s00145-004-0314-9