DOI QR코드

DOI QR Code

유기인산계 추출제로 합성한 이온성액체에 의한 묽은 염산용액에서 코발트(II)와 니켈(II)의 추출분리

Solvent Extraction Separation of Co(II) and Ni(II) from Weak Hydrochloric Acid Solution with Ionic Liquids Synthesized from Organophosphorus Acids

  • 문현승 (목포대학교 공과대학 신소재공학과) ;
  • 송시정 (목포대학교 공과대학 신소재공학과) ;
  • ;
  • 이만승 (목포대학교 공과대학 신소재공학과)
  • Moon, Hyun Seung (Department of Advanced Material Science & Engineering, Institute of Rare metal, Mokpo National University) ;
  • Song, Si Jeong (Department of Advanced Material Science & Engineering, Institute of Rare metal, Mokpo National University) ;
  • Tran, Thanh Tuan (Department of Advanced Material Science & Engineering, Institute of Rare metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Material Science & Engineering, Institute of Rare metal, Mokpo National University)
  • 투고 : 2020.09.15
  • 심사 : 2020.10.06
  • 발행 : 2020.10.30

초록

묽은 염산용액에서 이온성액체에 의한 코발트(II)와 니켈(II)의 분리를 조사하기 위해 이온성액체의 종류와 농도 및 수상의 초기 pH를 변화시켜 추출실험을 수행했다. 본 논문에서는 유기인산(D2EHPA, PC88A, Cyanex 272, Cyanex 301)을 Aliquat 336과 반응시켜 제조한 이온성액체와 Aliquat 336의 염소이온을 SCN과 치환한 이온성액체를 사용했다. 세 종류의 이온성액체(ALi-D2, ALi-PC, ALi-CY272)에 코발트(II)가 니켈(II)보다 추출이 잘 되었으며 평형 pH가 초기 pH보다 높았다. ALi-CY301의 경우 코발트(II)와 니켈(II)의 선택도는 추출조건에 의존했다. 또한 상기 이온성액체에 TBP의 첨가가 두 금속의 추출에 미치는 영향도 조사했다. 추출제로 ALi-SCN를 사용하는 조건에서 코발트(II)가 선택적으로 추출되어 두 금속을 완전히 분리하는 것이 가능했다.

In order to investigate the separation of Co(II) and Ni(II) by ionic liquids from weak hydrochloric acid solutions, extraction experiments were performed by changing the type and concentration of ionic liquids and the initial pH of the aqueous phase. Two kinds of ionic liquids based on Aliquat 336 were employed in this work; one was synthesized by reacting organophosphorus acids(D2EHPA, PC88A, Cyanex 272, Cyanex 301) with Aliquat 336 and the other was prepared by exchanging the chloride ion of Aliquat 336 with SCN-. The three types of ionic liquids (ALi-D2, ALi-PC, and ALi-CY272) showed better extraction of Co(II) than Ni(II), and the equilibrium pH was higher than the initial pH. In the case of ALi-CY301, the selectivity of Co(II) and Ni(II) depended on the extraction conditions. In addition, the effect of the addition of TBP to the ionic liquid on the extraction of two metals was also investigated. Employment of ALi-SCN as an extractant resulted in selective extraction of Co(II) and complete separation of the two metal ions was possible.

키워드

참고문헌

  1. Shedd, K. B., McCullough, E. A., Bleiwas, D. I., 2017 : Global trends affecting the supply security of cobalt, Mining engineering, pp.37-42.
  2. Wang, X., Gaustad, G., Babbitt, C. W., 2016 : Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation, Waste Management, 51, pp.204-213. https://doi.org/10.1016/j.wasman.2015.10.026
  3. Fernandes, A., Afonso, J. C., Dutra, A. J. B., 2012 : Hydrometallurgical route to recover nickel, cobalt and cadmium from spent Ni-Cd batteries, Journal of Power Sources, 220, pp.286-291. https://doi.org/10.1016/j.jpowsour.2012.08.011
  4. Liu, C., Deng, Y., Chen, J., et al., 2017 : An Integrated Process to Recover NiMH Battery Anode Alloy with Selective Leaching and Multi-stage Extraction, Industrial & Engineering Chemistry Research.
  5. Wang, L. Y., Lee, M. S., 2017 : Separation of Co(II) and Ni(II) from chloride leach solution of nickel laterite ore by solvent extraction with Cyanex 301, International Journal of Mineral Processing, 166, pp.45-52. https://doi.org/10.1016/j.minpro.2017.07.004
  6. Silveira, G. T. R., Chang, S. Y. 2010 : Cell phone recycling experiences in the United States and potential recycling options in Brazil, Waste Management, 30, pp. 2278-2291. https://doi.org/10.1016/j.wasman.2010.05.011
  7. Bertuol, D. A., Bernardes, A. M., Tenorio, J. A. S., 2006 : Spent NiMH batteries: Characterization and metal recovery through mechanical processing, Journal of Power Sources, 160, pp.1465-1470. https://doi.org/10.1016/j.jpowsour.2006.02.091
  8. Lisbona, D., Snee, T., 2011 : A review of hazards associated with primary lithium and lithium-ion batteries, Process Safety and Environmental Protection, 89, pp.434-442. https://doi.org/10.1016/j.psep.2011.06.022
  9. Gupta, B., Deep, A., Singh, V., et al., 2003 : Recovery of cobalt, nickel, and copper from sea nodules by their extraction with alkylphosphines, Hydrometallurgy, 70, pp. 121-129. https://doi.org/10.1016/S0304-386X(03)00052-5
  10. Cheng, C. Y., 2006 : Solvent extraction of nickel and cobalt with synergistic systems consisting of carboxylic acid and aliphatic hydroxyoxime, Hydrometallurgy, 84, pp.109-117. https://doi.org/10.1016/j.hydromet.2006.05.002
  11. Virolainen, S., Fini, M. F., Laitinen, A., et al., 2017 : Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co, Seperation and Purification Technology, 179, pp.274-282. https://doi.org/10.1016/j.seppur.2017.02.010
  12. Zhang, P., Yokoyama, T., Itabashi, O., et al., 1998 : Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, 47, pp.259-271. https://doi.org/10.1016/S0304-386X(97)00050-9
  13. Nan, J., Han, D., Zuo, X., 2005 : Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction, Journal of Power Sources, 152, pp.278-284. https://doi.org/10.1016/j.jpowsour.2005.03.134
  14. Castillo, S., Ansart, F., Laberty-Robert, C., et al., 2002 : Advances in the recovering of spent lithium battery compounds, Journal of Power Sources, 112, pp.247-254. https://doi.org/10.1016/S0378-7753(02)00361-0
  15. Contestabile, M., Panero, S., Scrosati, B., 2001 : A laboratory-scale lithium-ion battery recycling process, Journal of Power Sources, 92, pp.65-69. https://doi.org/10.1016/S0378-7753(00)00523-1
  16. Badawy, S. M., Nayl, A. A., El Khashab, R. A., et al., 2014 : Cobalt separation from waste mobile phone batteries using selective precipitation and chelating resin, J Mater Cycles Waste Manag, 16, pp.739-746. https://doi.org/10.1007/s10163-013-0213-y
  17. Devi, N.B., Nathsarma, K. C., Chakravortty, V., 1998 : Separation and recovery of cobalt(II) and nickel(II) from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272, Hydrometallurgy, 49, pp.47-61. https://doi.org/10.1016/S0304-386X(97)00073-X
  18. Georgi-Maschler, T., Friedrich, B., Weyhe, R., et al., 2012 : Development of a recycling process for Li-ion batteries, Journal of Power Sources, 207, pp.173-182. https://doi.org/10.1016/j.jpowsour.2012.01.152
  19. Zante, G., Masmoudi, A., Barillon, R., et al., 2020 : Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids, Journal of Industrial and Engineering Chemistry, 82, pp. 269-277 (2020). https://doi.org/10.1016/j.jiec.2019.10.023
  20. Plechkova, N. V., Seddon, K. R., 2008 : Applications of ionic liquids in the chemical industry, The Royal Society of Chemistry, 37, pp.123-150. https://doi.org/10.1039/B006677J
  21. Oh, C. G., Son, S. H., Lee, M. S., 2019 : Solvent Extraction of Tb(III) from Chloride Solution using Organophosphorous Extractant, its Mixture and Ionic Liquids with Amines, J. of Korean Inst. of Resources Recycling, 28(1), pp.40-46. https://doi.org/10.7844/KIRR.2019.28.1.40
  22. Padhan, E., Sarangi, K., 2017 : Recovery of Nd and Pr from NdFeB magnet leachates with bi-functional ionic liquids based on Aliquat 336 and Cyanex 272, Hydrometallurgy, 167, pp.134-140. https://doi.org/10.1016/j.hydromet.2016.11.008
  23. Tran, T. T., Azra, N., Iqbal, M., et al., 2020 : Synthesis of succinimide based ionic liquids and comparison of extraction behavior of Co(II) and Ni(II) with bi-functional ionic liquids synthesized by Aliquat336 and organophosphorus acids, Separation and Purification Technology, 238, 116496. https://doi.org/10.1016/j.seppur.2019.116496
  24. Tran, T. T., Lee, M. S., 2020 : Separation of Mo(VI), V(V), Ni(II), Al(III) from synthetic hydrochloric acidic leaching solution of spent catalysts by solvent extraction with ionic liquid, Separation and Purification Technology, 247, 117005. https://doi.org/10.1016/j.seppur.2020.117005
  25. Clifford, W. E., McClaine, L. A., George, J. B. H., et al., 1965 : Remval of metal contaminants from nickel-containing, U.S. Patent Office, 3194652.
  26. J. S. Preston., 1982 : Solvent Extraction of Cobalt(l1) and Nickel(l1) by a Quaternary Ammonium Thiocyanate, Separation Science and Technology, 17(15), pp.1697-1718. https://doi.org/10.1080/01496398208055652
  27. Rybka, P., Regel-rosocka, M., 2012 : Nickel(II) and Cobalt (II) Extraction from Chloride Solutions with Quaternary Phosphonium Salts, Separation Science and Technology, 47, pp.1296-1302. https://doi.org/10.1080/01496395.2012.672532
  28. Sun, X., Ji, Y., Hu, F., et al., 2010 : The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction, Talanta, 81, pp.1877-1883. https://doi.org/10.1016/j.talanta.2010.03.041
  29. Baek, J. W., Lee, M. S., 2017 : Separation of Rhenium (VII) and Vanadium(V) from concentrated HCl solution by solvent extraction with Alamine 336 and LIX 63, Korean J. Met. Mater, 55(1), pp.31-38 https://doi.org/10.3365/KJMM.2017.55.1.31
  30. Liu, Y., Jeon, H. S., Lee, M. S., 2014 : Solvent extraction of Pr and Nd from chloride solution by the mixtures of Cyanex 272 and amine extractants, Hydrometallurgy, 150, pp.61-67. https://doi.org/10.1016/j.hydromet.2014.09.015
  31. Wang, L.Y., Lee, M. S., 2017 : Recovery of Co(II) and Ni(II) from chloride leach solution of nickel laterite ore by solvent extraction with a mixture of Cyanex 301 and TBP, Journal of Molecular Liquids, 240, pp.345-350. https://doi.org/10.1016/j.molliq.2017.05.103
  32. Moyer, B. A., 2013 : Ion Exchange and Solvent Extraction Volume 21, Supramolecular Aspects of Solvent Extraction, p.293, 1st Edition, CRC Press, United States.
  33. Wang, X., Li, W., Meng, S., et al., 2006 : The extraction of rare earths using mixtures of acidic phosphorus-based reagents or their thio-analogues, J Chem Technol Biotechnol, 81, pp.761-766. https://doi.org/10.1002/jctb.1532
  34. Das, D., Juvekar, V. A., Rupawate, V. H., et al., 2015 : Effect of the nature of organophosphorous acid moiety on co-extraction of U(VI) and mineral acid from aqueous solutions using D2EHPA, PC88A and Cyanex 272, Hydrometallurgy, 152, pp.129-138. https://doi.org/10.1016/j.hydromet.2014.12.018
  35. Lee, M. S., Oh, Y. J., 2004 : Estimation of Thermodynamic Properties and Ionic Equilibria of Cobalt Chloride Solution at 298K, Materials Transactions, 45(4) pp.1317-1321.
  36. Hogfeldt, E., 1982 : Stability Constants of Metal-Ion Complexes, Part A : Inorganic Ligands, p.87-88, Vol. 21, Pergamon Press, Oxford, NewYork, Toronto, Sydney, Paris, Frankfurt.