DOI QR코드

DOI QR Code

고온과 한발이 콩의 수량 및 품질에 미치는 영향

Effects of High Temperature and Drought on Yield and Quality of Soybean

  • 신평 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 상완규 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 김준환 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 이윤호 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 백재경 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 권동원 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 조정일 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 서명철 (농촌진흥청 국립식량과학원 작물재배생리과)
  • Shin, Pyeong (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Sang, Wan-Gyu (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Jun-Hwan (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Yun-ho (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Jae-Kyeong (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Kwon, Dong-Won (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Jung-Il (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Myung-Chul (Crop physiology and production, National Institute of Crop Science, Rural Development Administration)
  • 투고 : 2020.10.12
  • 심사 : 2020.11.05
  • 발행 : 2020.12.01

초록

본 연구는 2017년과 2018년의 기상을 가지고 연도별에 따른 대원, 대풍2호, 풍산나물콩의 생육 및 수량구성요소와 종자 크기, 지방, 단백질 함량을 분석하였다. 두 연도별 생육 시기를 보면 대원과 대풍2호에서 2018년이 2017년보다 생육 시기가 빠른 경향을 보였으나 풍산나물콩은 큰 차이가 없었다. 생육 기간 중 R1~R5에서 평균기온은 모든 품종에서 2018년이 2017년보다 높은 반면에 강수량은 풍산나물콩을 제외한 모든 품종에서 2018년이 2017년보다 적었다. 수분모형으로 각 연도의 일별 토양수분함량을 예측한 결과 2018년이 2017년보다 한발 기간이 길었고 개화시부터 종실비대기 이전까지 한발이 지속된 것으로 예측되었다. 종실 수량과 백립중은 2017년이 2018년보다 더 컸으며, 종실 크기는 2017년의 종실이 2018년보다 큰 경향을 나타내었다. 지방 함량은 모든 품종에서 2017년의 지방함량이 2018년보다 많았고 대풍2호, 대원이 연도별 기상에 따른 큰 차이를 보였다. 반면 단백질 함량은 2018년이 2017년보다 높은 경향을 보였지만 품종별 차이를 나타내었다. 결과적으로 2018년의 개화시부터 종실비대시 이전 기간이 2017년보다 평균기온이 높고 강수량이 적은 기상으로 인하여 콩의 수량, 지방 및 단백질 함량에 영향을 주었다. 이번 연구를 통하여 고온과 한발에 내성이 있음과 동시에 품질 감소가 저하되는 콩 품종 개발 및 재배 연구가 활발하게 이루어질 것이라 생각된다.

Currently, many studies are being conducted to cope with climate changes due to global warming and abnormal weather. The objective of this study was to investigate the effects of weather on the growth, yield components, and quality of soybeans using weather data from 2017 and 2018. The average temperature in 2018 was higher than that in 2017 from R1 to R5 of the growth stage for all cultivars. On the other hand, precipitation in 2018 was reduced compared to that in 2017 for Daewon and Daepung-2ho. It was observed that the flowering date in 2018 was earlier than that in 2017 for Daewon and Daepung-2ho, but the flowering date for Pungsannamul in 2018 was similar to that in 2017. Simulating soil water content with the estimation model (AFKAE0.5) determined that there were fewer drought dates in 2017 than those in 2018, and drought lasted from R1 to early R5 of the growth stage in 2018. Soybean growth in 2017 was better than that in 2018, and seed yield and 100-seed weight of soybean were higher in 2017 than those in 2018 for all cultivars. The seed size in 2017 was larger than that in 2018 for all cultivars. Oil content in 2017 was higher than that in 2018; in particular, the difference between both years was observed for Daewon and Daepung-2ho. Protein content was higher in 2018 than that in 2017; however, there were different levels for each cultivar. Thus, these results indicate that the yield component and quality of soybeans are affected by high temperature and drought.

키워드

참고문헌

  1. Allen, L. H. Jr., L. Zhang, K. J. Boote, and B. A. Hauser. 2018. Elevated temperature intensity, timing, and duration of exposure affect soybean internode elongation, main stem node number, and pod number per plant. The Crop Journal 6(2) : 148-161. https://doi.org/10.1016/j.cj.2017.10.005
  2. Boydak, E. M. Alpaslan, M. Hayta, S. Gercek, and M. Simsek, 2002. Seed composition of soybeans grown in the Harran region of Turkey as affected by row spacing and irrigation. J. Agric. Food Chem. 50(16) : 4718-4720. https://doi.org/10.1021/jf0255331
  3. Boyer, J. S. 1983. In raper, C. D. Jr., Kramer, P. J. (ed) Environmental stress and crop yields, Crop reactions to water and temperature stress in humid, temperature climates (Eds CD Raper Jr, and PJ Kramer). 3-7.
  4. Carrera, C., M. J. Martinez, J. Dardanelli, and M. Balzarini. 2009. Water deficit effect on the relationship between temperature during the seed fill period and soybean seed oil and protein concentrations. Crop Sci. 49(3) : 990-998. https://doi.org/10.2135/cropsci2008.06.0361
  5. Coward, L., N. C. Barnes, K. D. Setchell, and S. Barnes. 1993. Genistein, daidzein, and their. Beta-glycoside conjugates: antitumor isoflabones in soybean food from American and Asian diets. J. Agric. Food Chem. 41(11) : 1961-1967. https://doi.org/10.1021/jf00035a027
  6. Djanaguiraman, M., P. V. V. Prasad, D. L. Boyle, and W. T. Schapaugh. 2013. Soybean pollen anatomy, viability and pod set under high temperature stress. Journal of Agronomy and Crop Science. 199(3) : 171-177. https://doi.org/10.1111/jac.12005
  7. Dornbos, D. L., Jr. and R. E. Mullen. 1992. Soybean seed protein and oil contents and fatty acid composition adjustment by drought and temperature. JAOCS, 69(3).
  8. Doss, D. R., R. W. Pearson, and H, T, Rogers. 1974. Effect of soil water stress at various growth stages in soybean yield. Agron. J. 66(2) : 297-299. https://doi.org/10.2134/agronj1974.00021962006600020032x
  9. Egli, D. B. and I. F. Wardlaw. 1980. Temperature response of seed growth characteristics of soybeans. Agron J. 72(3) : 560-564. https://doi.org/10.2134/agronj1980.00021962007200030036x
  10. Fred, S. and C. E. Watts. 1993. Dumas method for organic nitrogen. Industrial and Engineering chemistry, Analytical Edition. 11(6) : 333-334. https://doi.org/10.1021/ac50134a013
  11. Im, E. S., J. B. Ahn and S. R. Jo 2015: Regional climate projection over South Korea simulated by the HadGEM2-AO and WRF model chain under RCP emission scenarios. Climate Research 63(3) : 249-266. https://doi.org/10.3354/cr01292
  12. Kim, C. G. and M. H. Koh. 1997. Effect of drought stress at various growth stages on soybean growth and yield. Korean journal of crop science. 42(1) : 89-94.
  13. Kumar, V. Rani, A. Solanki, S. Hussain, S. M. 2006. Influence of growing environment on the biochemical composition and physical characteristics of soybean seed. J. Food Compos. Anal. 19(2-3), 188-195. https://doi.org/10.1016/j.jfca.2005.06.005
  14. Lee, Y. H., H. S. Cho, J. H. Kim, W. G. Sang, P. Shin, J. K. Baek, and M. C. Seo. 2018. The effects of increased temperature on seed nutrition, protein, and oil contents of soybean [Glycine max (L.)]. Korean Journal of Crop Science. 64(4) : 331-337.
  15. Liu, F. 2004. Physiological regulation of pod set in in soybean (Glycine max L. Merr.) during drought at early reproductive stage.
  16. Messina, M. and V. Messina. 2010. The role of soy in vegetarian diets. Nutrients 2(8) : 855-888. https://doi.org/10.3390/nu2080855
  17. Park. K. W., T. H. Ahn, and J. W. Cho. 2010. Effect of high temperature during reproductive growth period on soybean growth, nitrogen and cation content. Korean Journal of Crop Science 55(1) : 14-18.
  18. Puteh A. B., M. Thuzar, M. M. A. Mondal, N. A. P. B. Abdullah, and M. R. A. Halim. 2013. Soybean [Glycine max (L.) Merrill] seed yield response to high temperature stress during reproductive growth stages. Australian journal of crop science 7(10) : 1472-1479.
  19. RDA. 2012. Criteria for Agricultural Research and Investigation. 414-430.
  20. RDA. 2015. Standard Cultivation of Soybean. 135-144.
  21. Reddy, K. R. and V. G. Kakani. 2007. Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Scientia Horticulturea. 112(2) : 130-135. https://doi.org/10.1016/j.scienta.2006.12.014
  22. Rotundo, J. L. and M. E. Westgate. 2018. Rate and duration of seed component accumulation in water-stressed soybean. Crop Sci. 2010. 50(2) : 676-684. https://doi.org/10.2135/cropsci2009.05.0240
  23. Seo, M. C., S. O. Hur, Y. K. Sonn, H. S. Cho, W. T. Jeon, M. K. Kim, and M. T. Kim. 2012. The development of estimation model (AFKAE0.5) for water balance and soil water content using daily weather data. Korean Journal of Soil Sci. Fert. 45(6) : 1203-1210. https://doi.org/10.7745/KJSSF.2012.45.6.1203
  24. Specht, J. E., K. Chase, M. Macrander, G. L. Graef, J. Chung, J. P. Markwell, M. Germann, J. H. Orf, and K. G. Lark. 2001. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci. 41(2) : 493-509. https://doi.org/10.2135/cropsci2001.412493x
  25. Tacarindua, C. R., P. T. Shirawa, K. Homma, E. Kumagai, and R. Sameshima. 2013. The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crop Research 154: 74-81. https://doi.org/10.1016/j.fcr.2013.07.021
  26. Thanacharoenchanaphas, K. and O. Rugchati. 2011. Simulation of climate variability for assessing impacts on yield and genetic change of Thai soybean. International J. Environment and Ecological Engineering 5(11) : 645-649.
  27. Thomas, J. M. G., K. J. Boote, D. Pan, and L. H. Allen. 2010. Elevated temperature delays onset of reproductive growth and reduces seed growth rate of soybean. J. Agri Crop Sci. 1:19-32.
  28. Van Doren, D.M. and D.C. Reicosky. 1987. Tillage and irrigation, pp. 391-428. In: Wilcox, J.R. (ed.). Soybeans: Improvement, production and uses, 2nd Ed. Monogr. 16, Am. Soc. Agron., Madison, Wisconsn.
  29. Westgate, M. E. and C. M. Peterson. 1993. Flower and pod development in water-deficient soybean (Glycine max L. Merr.) J. Exp. Bot. (44)109-117.