DOI QR코드

DOI QR Code

해수 중 용존 암모늄 분석방법 비교: 분광광도법과 형광법

Comparison of Dissolved Ammonium Analytical Method in Seawater: Spetrophotometry and Fluorometry

  • 손푸르나 (한국해양과학기술원 해양기기개발.운영센터) ;
  • 박준성 (한국해양과학기술원 해양기기개발.운영센터) ;
  • 노태근 (한국해양과학기술원 해양기기개발.운영센터)
  • SON, PURENA (Instrumental Development and Management Center, Korea Institute of Ocean Science and Technology) ;
  • PARK, JOONSEONG (Instrumental Development and Management Center, Korea Institute of Ocean Science and Technology) ;
  • RHO, TAEKEUN (Instrumental Development and Management Center, Korea Institute of Ocean Science and Technology)
  • 투고 : 2020.10.06
  • 심사 : 2020.11.27
  • 발행 : 2020.11.30

초록

해수 중 용존 암모늄 분석에는 Berthlot's 반응의 분광광도법이 일반적으로 사용되었으나, 최근에는 OPA (orthophthaldialdehyde-sulfite) 형광시약을 이용한 형광법이 국제적으로 활발하게 사용되고 있다. 본 연구에서는 2017년도 호주연구선 Investigator에서 수행된 국제 영양염 선상 상호비교 실험에서 두 기관(KIOST(분광광도법, 1차 선형 회귀식 기울기만 사용), 호주CSIRO(형광법, 2차 비선형 회귀식 사용))간의 영양염 표준물질과 현장 해수시료의 용존 암모늄 농도값 차이(약 0.31 𝜇M)의 원인을 이해하기 위해 분석방법 간 검출한계, 분광광도법에 내재된 시약 굴절률, 검량선식 등에 의한 영향을 고찰하였다. 본 연구에서 측정된 분광광도법의 방법검출한계(0.063 𝜇M)와 시약 굴절률 바탕값(0.054 𝜇M)은 두 기관의 용존 암모늄 농도값 차이를 각각 20%, 17% 정도 설명할 수 있었다. 그러나 분광광도법의 검량선을 형광법과 동일한 2차식 또는 선형회기식의 기울기와 절편으로 농도를 계산할 경우, 두 기관 간의 용존 암모늄 농도값 차이는 현장에서 측정된 분광광도법의 방법검출한계 이하로 줄었다. 따라서 국제 영양염 선상 상호비교 실험에서 영양염 표준물질과 해수 현장시료에서 나타난 두 기관 간의 용존 암모늄 농도값 차이는 분광광도법과 형광법의 분석방법 차이에 의한 영향보다는 두 방법에 사용된 상이한 검량선식 영향인 것으로 판단된다. 향후 해수시료의 용존 암모늄 자료를 비교할 때 분석방법의 차이보다는 분석에 사용된 기저선, 표준용액열 개수, 검량선식 등에 대한 정보에 유의할 것을 권장한다.

Berthlot's reaction spectrophotometric method is generally used for the analysis of dissolved ammonium in seawater, but in recent years, a fluorescence method using an orthophthaldialdehyde-sulfite (OPA) fluorescent reagent is actively used internationally. In this study, we investigated the effects of the detection limit between the analysis methods, the reagent refractive index inherent in the spectrophotometric method, and the use of different calibration curves to understand the cause of the difference in dissolved ammonium concentration (about 0.31 𝜇M) observed in the seawater samples and a nutrient reference material between two institutions (KIOST (spectrophotometric method, one-order linear regression gradient only), Australia CSIRO (fluorescence method, quadratic formula)) conducted onboard the Australian R/V Investigator in 2017. The method detection limit (0.063 𝜇M) and the reagent refractive index background value (0.054 𝜇M) of the spectrophotometric method measured in this study could explain the difference in dissolved ammonium concentration values of the two institutes about 20% and 17%, respectively. However, when the concentration of the calibration curve of the spectrophotometric method was calculated using the same quadratic as the fluorescence method or the slope and intercept of linear regression, the difference in the dissolved ammonium concentration between the two institutions was reduced to less than the detection limit of the spectrophotometric method. Therefore, the difference in the concentration of dissolved ammonium between the two institutions, found in the nutrient reference materials and the seawater field sample during the international onboard nutrient inter-comparison experiment, may be attributed to be the effect of the different calibration curves used in the two methods rather than the effect of the difference in two analytical methods. When comparing the dissolved ammonium data from seawater samples in the future, it is recommended to pay attention to the information on the baseline, number of standard solutions, and calibration curve used in the analysis.

키워드

참고문헌

  1. Aminot, A., R. Kerouel and D.S. Kirkwood, 1997. Determination of ammonia in seawater by the indophenol method: evaluation of the ICES NUTS I/C 5 questionnaire. Mar. Chem., 56: 59-75. https://doi.org/10.1016/S0304-4203(96)00080-1
  2. Aminot, A., R. Kerouel and D. Birot, 2001. A flow injection-fluorometric method for the determination of ammonium in fresh and saline waters with a view to in situ analyses. Water Res., 35(7): 1777-1785. https://doi.org/10.1016/s0043-1354(00)00429-2
  3. Aminot, A., R. Kerouel and S. Coverly, 2009. Nutrients in seawater using segmented flow analysis. In: Practical Guidelines for the Analysis of Seawater, edited by Wurl, O., CRC Press, London, pp. 143-178.
  4. Coverly, S., R. Kerouel and A. Aminot, 2012. A re-examination of matrix effects in the segmented-flow analysis of nutrients in sea and estuarine water. Anal. Chim. Acta, 712: 94-100. https://doi.org/10.1016/j.aca.2011.11.008
  5. Dugdale, R.C. and J.J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr., 12: 196-202. https://doi.org/10.4319/lo.1967.12.2.0196
  6. Grasshoff, K. and H. Johannsen, 1972. A new sensitive and direct method for the automatic determination of ammonia in sea water. J. Cons. perm. int. Explor. Mer., 34(3): 516-521. https://doi.org/10.1093/icesjms/34.3.516
  7. Harrison, W.G., L.R. Harris and B.D. Irwin, 1996. The kinetics of nitrogen utilization in the oceanic mixed layer: nitrate and ammonium interactions at nanomolar concentrations. Limnol. Oceanogr., 41(1): 16-32. https://doi.org/10.4319/lo.1996.41.1.0016
  8. Hydes D.J., M. Aoyama, A. Aminot, K. Bakker, S. Becker, S. Coverly, A. Daniel, A.G. Dickson, O. Grosso, R. Kerouel, J.V. Ooijen, K. Sato, T. Tanhua, E.M.S Woodward and J.Z. Zhang, 2010. Determination of dissolved nutrients(N, P, Si) in seawater with high precision and inter-comparability using das-segmented continuous flow analysers. In: The GO-SHIP Repeat Hydrography Manual: a Collection of Expert Reports and Guidelines, edited by Hood E.M., C.L. Sabine and B.M. Sloyan, UNESCO-IOC, Paris, pp. 1-88.
  9. ICES, 1995. Report on the results of the fifth ICES intercomparison exercise for nutrients in seawater.
  10. Krom, M.D., 1980. Spectrophotometric determination of ammonia: a study of a modified berthelot reaction using salicylate and dichloroisocyanurate. Analyst, 105: 305-316. https://doi.org/10.1039/an9800500305
  11. Kerouel, R. and A. Aminot, 1997. Fluorometric determination of ammonia in sea and estuarine waters by direct segmented flows analysis. Mar. Chem., 17: 265-275. https://doi.org/10.1016/S0304-4203(97)00040-6
  12. Patton, C.J. and S.R. Crouch, 1977. Spectrophotometric and kinetics investigation of the berthelot reaction for the determination of ammonia. Anal. Chem., 49(3): 464-469. https://doi.org/10.1021/ac50011a034
  13. Rho T.K., S. Coverly, E.S. Kim, D.J. Kang, S.H. Kahng, T.H. Na, S.R. Cho, J.M. Lee and C.R. Moon, 2015. Practical considerations for the segmented-flow analysis of nitrate and ammonium in seawater and the avoidance of matrix effects. Ocean sci. J., 50(4): 709-720. https://doi.org/10.1007/s12601-015-0064-7
  14. Roskam, R.T. and D.D. Langen, 1964. A simple colorimetric method for the determination of ammonia in seawater. Anal. chim. Acta, 30: 56-59. https://doi.org/10.1016/S0003-2670(00)88684-5
  15. Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr., 14(5): 799-801. https://doi.org/10.4319/lo.1969.14.5.0799
  16. USEPA, 2016. Definition and procedure for the determination of the method detection limit (revision 2).
  17. Wheeler, P.A. and S.A. Kokkinakis, 1990. Ammonium recycling limits nitrate use in the oceanic Subarctic Pacific. Limnol. Oceanogr., 35(6): 1267-1278. https://doi.org/10.4319/lo.1990.35.6.1267
  18. Willason, S.W. and K.S. Johnson, 1986. A rapid, highly sensitive technique for the determination of ammonia in seawater. Mar. Biol., 91: 285-290. https://doi.org/10.1007/BF00569445