DOI QR코드

DOI QR Code

3D프린터로 제작된 PLA재질의 도구와 기성품인 스테인리스 스틸 재질의 도구 사이의 연부조직 가동술에 의한 근활성도 차이

Differences in muscle activity by IASTM between a tool made of PLA made with a 3D printer and a ready-made tool made of stainless steel

  • 김충유 (부산성모병원 재활의학과) ;
  • 강종호 (부산가톨릭대학교 물리치료학과) ;
  • 태원규 (큰솔1병원 재활의학과)
  • Kim, Chung-Yoo (Department of rehabilitation medicine, Busan St. Mary's hospital) ;
  • Kang, Jong-Ho (Department of physical therapy, Catholic University of Pusan) ;
  • Tae, Won-Kyu (Department of rehabilitation medicine, Keunsol 1 medical hospital)
  • 투고 : 2020.09.03
  • 심사 : 2020.11.20
  • 발행 : 2020.11.28

초록

본 연구는 3D프린터로 제작된 PLA재질의 도구와 기성품인 스테인리스 스틸 재질 도구 사이의 연부조직 가동술에 의한 근활성도 차이를 관찰하고자 수행하였다. 본 연구는 20대 성인 10명이 참석하였고, 모든 대상자는 각각 PLA재질의 도구를 사용하여 연부조직 가동술을 받은 PLA 집단과 스테인리스 스틸 재질의 도구를 사용한 Stainless 집단에 모두 참여하여 도구를 이용한 연부조직 가동술(IASTM)을 받았다. 모든 대상자는 중재 후 근활성도의 측정을 통해 %MVIC가 측정되었고, 이를 Mann-Whitney U검정을 통해 집단간 비교를 통해 검증하였다. 본 연구의 결과는 중재 후 위팔 두갈래근의 %MVIC 값은 두 집단 간 유의한 차이를 보이지 않았다. 따라서 IASTM의 적용에서 도구의 재질에 따라 근활성도의 차이를 보이지 않았고, 이는 3D프린터로 제작된 PLA재질의 IASTM 도구가 스테인리스로 제작된 기성품과 신경근 조절 능력에서 유사한 결과를 도출해 냄으로 보인다. 이에 추후 연구에서는 다양한 환자군을 대상으로 도구의 실효성에 대해 검증할 것이다.

This study was conducted to observe the difference in muscle activity by IASTM between a tool made of PLA made with a 3D printer and a tool made of ready-made stainless steel. This study was attended by 10 adults in their twenties, and all subjects participated in both the PLA group and the Stainless group, received IASTM. %MVIC was measured by measuring muscle activity after intervention, and this was verified through comparison between groups through the Mann-Whitney U test. The results of this study showed that there was no significant difference between the two groups in the %MVIC value of the biceps brachii after intervention. Therefore, in the application of IASTM, there was no difference in muscle activity depending on the material of the tool, which seems to be that the IASTM tool made of PLA made with a 3D printer produced similar results in the ability to control neuromuscular muscles and the ready-made product made of stainless steel. Therefore, in a future study, the effectiveness of the tool will be verified for the various patient group.

키워드

참고문헌

  1. K Laudner, B. D. Compton, T. A. McLoda & C. M. Walters. (2014). ACUTE EFFECTS OF INSTRUMENT ASSISTED SOFT TISSUE MOBILIZATION FOR IMPROVING POSTERIOR SHOULDER RANGE OF MOTION IN COLLEGIATE BASEBALL PLAYERS. Int J Sports Phys Ther, 9(1), 1-7.
  2. J. Y. Kim, D. J. Sung & J. H. Lee. (2017). Therapeutic effectiveness of instrument-assisted soft tissue mobilization for soft tissue injury: mechanisms and practical application. J Exerc Rehabil, 13(1), 12-22. DOI : 10.12965/jer.1732824.412
  3. D. H. Kim, T. H. Kim, D. Y. Jung & J. H. Weon. (2014). Effects of the Graston Technique and Self-myofascial Release on the Range of Motion of a Knee Joint. J Korean Soc Phys Med, 9(4), 455-463. DOI : 10.13066/kspm.2014.9.4.455
  4. R. T. Baker, A. Start, L. Larkins, D. Burton & J. May. (2018). Exploring the Preparation, Perceptions, and Clinical Profile of Athletic Trainers Who Use Instrument-Assisted Soft Tissue Mobilization. Athl. Train. Sports Health Care, 10(4), 169-180. DOI : 10.3928/19425864-20180201-02
  5. J. H. Lee, D. K. Lee & J. S. Oh. The effect of Graston technique on the pain and range of motion in patients with chronic low back pain. (2016). JPTS, 28(6), 1852-1855. DOI : 10.1589/jpts.28.1852
  6. A. N. Keck. (2014). Effects of Graston Technique on blood flow in the upper extremity. master's thesis. Illinois State University, Illinois. DOI : 10.30707/ETD2014.Keck.A
  7. J J. Lee, J. J. Lee, D. H. Kim & S. H. You. (2014). Inhibitory effects of instrument-assisted neuromobilization on hyperactive gastrocnemius in a hemiparetic stroke patient. BIO-MED MATER ENG, 24(6), 2389-2394. DOI : 10.3233/BME-141052
  8. J. Burke, D. J. Buchberger, M. T. Carey-Loghmani, P. E. Dougherty, D. S.Greco & J. D. Dishman. (2007). A Pilot Study Comparing Two Manual Therapy Interventions for Carpal Tunnel Syndrome. J MANIP PHYSIOL THER, 30(1), 50-61. DOI : 10.1016/j.jmpt.2006.11.014
  9. J. H. Park et al. (2016). Literature Review of Tool-based Manipulation for Musculoskeletal Diseases-with Focus on Guasha and IASTM. JKMR, 26(4), 57-65. DOI : 10.18325/jkmr.2016.26.4.57
  10. Y. A. Jodat et al. (2020). A 3D‐Printed Hybrid Nasal Cartilage with Functional Electronic Olfaction. Adv. Sci, 7(5), 1901878. DOI : 10.1002/advs.201901878
  11. R Xu, Z. Wang, T. Ma, Z. Ren & H. Jin. (2019). Effect of 3D Printing Individualized Ankle-Foot Orthosis on Plantar Biomechanics and Pain in Patients with Plantar Fasciitis: A Randomized Controlled Trial. (2019). Med Sci Monit, 25, 1392-1400. DOI : 10.12659/MSM.915045
  12. I. C. Jeon. (2020). Comparison of Muscle Activity of Vastus Lateralis and Medialis Oblique among Knee Extension Angles at 90°, 135°, 180° in Sitting Position. J Kor Phys Ther, 32(1), 52-57. DOI : 10.18857/jkpt.2020.32.1.52
  13. D. H. Kim. (2014). Effects of Soft Tissue Mobilization Techniques on Neuromotor Control and Stiffness in Hamstring Shortness. Doctoral dissertation. Yonsei University, Wonju.