DOI QR코드

DOI QR Code

Characteristics of LaCo1-xNixO3-δ Coated on Ni/YSZ Anode using CH4 Fuel in Solid Oxide Fuel Cells

  • Kim, Jun Ho (School of Chemical Engineering, Chonnam National University) ;
  • Jang, Geun Young (School of Chemical Engineering, Chonnam National University) ;
  • Yun, Jeong Woo (School of Chemical Engineering, Chonnam National University)
  • Received : 2020.03.06
  • Accepted : 2020.05.06
  • Published : 2020.11.30

Abstract

Nickel-doped lanthanum cobalt oxide (LaCo1-xNixO3-δ, LCN) was investigated as an alternative anode material for solid oxide fuel cells. To improve its catalytic activity for steam methane reforming (SMR) reaction, Ni2+ was substituted into Co3+ lattice in LaCoO3. LCN anode, synthesized using the Pechini method, reacts with yttria-stabilized zirconia (YSZ) electrolyte at high temperatures to form an electrochemically inactive phase such as La2Zr2O7. To minimize the interlayer by-products, the LCN was coated via a double-tape casting method on the Ni/YSZ anode as a catalytic functional layer. By increasing the Ni doping amount, oxygen vacancies in the LCN increased and the cell performance improved. CH4 fuel decomposed to H2 and CO via SMR reaction in the LCN functional layer. Hence, the LCN-coated Ni/YSZ anode exhibited better cell performance than the Ni/YSZ anode under H2 and CH4 fuels. LCN with 12 mol% of Ni (LCN12)-modified Ni/YSZ anode showed excellent long-term stability under H2 and CH4 conditions.

Keywords

References

  1. S.C. Singhal, Solid State Ionics, 2002, 152, 405-410. https://doi.org/10.1016/S0167-2738(02)00349-1
  2. A.B. Stambouli, E. Traversa, Renew. Sust. Energ. Rev., 2002, 6, 433-455. https://doi.org/10.1016/S1364-0321(02)00014-X
  3. S. Park, J.M. Vohs, R.J. Gorte, Nature, 2000, 404, 265-267. https://doi.org/10.1038/35005040
  4. J.V. Herle, Y. Membrez, O. Bucheli, J. Power Sources, 2004, 127(1-2), 300-312. https://doi.org/10.1016/j.jpowsour.2003.09.027
  5. D.K. Niakolas, Appl. Catal.: A-Gen., 2014, 486, 123-142. https://doi.org/10.1016/j.apcata.2014.08.015
  6. S. Zha, Z. Cheng, M. Liu, J. Electrochem. Soc., 2007, 154(2), B201-B206. https://doi.org/10.1149/1.2404779
  7. R.J. Gorte, J.M. Vohs, J. Catal. 2003, 216(1-2), 477-486. https://doi.org/10.1016/S0021-9517(02)00121-5
  8. B.S. Prakash, S.S. Kumar, S.T. Aruna, Renew. Sust. Energ. Rev., 2014, 36, 149-179. https://doi.org/10.1016/j.rser.2014.04.043
  9. Z. Cheng, J.H. Wang, Y. Choi, L. Yang, M.C. Lin, M. Liu, Energ. Environ. Sci., 2011, 4(11), 4380-4409. https://doi.org/10.1039/c1ee01758f
  10. J.J.A. Flores, M.L.A. Rodriguez, G.A.Espinosa, J.V.A Vera, Int. J. Hydrogen. Energ, 2019. 44(24), 12529-12542. https://doi.org/10.1016/j.ijhydene.2018.05.171
  11. S.P.S. Shaikh, A. Muchtar, M.R. Somalu, Renew. Sust. Energ. Rev., 2015, 51, 1-8. https://doi.org/10.1016/j.rser.2015.05.069
  12. J.B. Goodenough, Y.H. Huang, J. Power Sources, 2007, 173(1), 1-10. https://doi.org/10.1016/j.jpowsour.2007.08.011
  13. J.B. Wang, J.C. Jang, T.J. Huang, J. Power Sources, 2003, 122(2), 122-131. https://doi.org/10.1016/S0378-7753(03)00438-5
  14. M. Watanabe, H. Uchida, M. Shibata, N. Mochizuki, K. Amikura, J. Elecrochem. Soc., 1994, 141(2), 342-346. https://doi.org/10.1149/1.2054728
  15. S.Sydyknazar, V.Cascos, M.T. Fernandez-Diaz, J.A. Alonso, J. Materiomics, 2019, 5, 280-285. https://doi.org/10.1016/j.jmat.2018.12.001
  16. V.Cascos, L. Troncoso, J.A. Alonso, M.T. Fernandes-Diaz, Renew. Energ., 2017, 111, 476-483. https://doi.org/10.1016/j.renene.2017.04.023
  17. S. Duran, N. Rangel, C. Silva, M.A. Macias, E. Capoen, C. Pirovano, A. Niemczyk, L. Suescun, P. Roussel, G.H. Gauthier, Solid State Ionics, 2019, 341, 115031. https://doi.org/10.1016/j.ssi.2019.115031
  18. J. Zhou, N. Wang, J. Cui, J. Wang, J. Yang, Z. Zong, Z. Zhang, Q. Chen, X. Zheng, K. Wu, J. Alloy. Compd., 2019, 792, 1132-1140. https://doi.org/10.1016/j.jallcom.2019.04.103
  19. M. Gou, R. Ren, W. Sun, C. Xu, X. Meng, Z. Wang, J. Qiao, K. Sun, Ceram. Int., 2019, 45(12), 15696-15704. https://doi.org/10.1016/j.ceramint.2019.03.130
  20. J. Liu, J. Ding, L. Miao, Z. Gong, K. Li, W. Liu, J. Alloy. Compd., 2019, 786, 163-168. https://doi.org/10.1016/j.jallcom.2019.01.312
  21. H.S. Kim, S.P. Yoon, J.W. Yun, S.A. Song, S.C. Jang, S.W. Nam, Y.G. Shul, Int. J. Hydrogen Energ., 2012. 37(21), 16130-16139.
  22. J.M. Lee, J.W. Yun, Ceram. Int., 2016, 42(7), 8698-8705. https://doi.org/10.1016/j.ceramint.2016.02.104
  23. E.K. Park, S. Lee, J.W. Yun, Appl. Surf. Sci., 2018, 429, 171-179. https://doi.org/10.1016/j.apsusc.2017.07.284
  24. M.A. Gwan, J.W. Yun, J. Electroceram., 2018, 40(3), 171-179. https://doi.org/10.1007/s10832-018-0117-2
  25. H.Y. Zhu, P.F. Zhang, S. Dai, ACS. Catal, 2015, 5(11), 6370-6385. https://doi.org/10.1021/acscatal.5b01667
  26. D.B. Meadowcroft, Nature, 1970, 226(5248), 847-848. https://doi.org/10.1038/226847a0
  27. J. Shim, K.J. Lopez, H.J. Sun, G. Park, J.C. An, S. Eom, S. Shimpalee, J.W. Weidner, J. Appl. Electrochem., 2015, 45(9), 1005-1012. https://doi.org/10.1007/s10800-015-0868-2
  28. D. Konwar, H.H. Yoon, J. Mater. Chem. A, 2016, 4(14), 5102-5106. https://doi.org/10.1039/C5TA10689C
  29. Y. Zhang, N. Xu, H. Fan, M. Han, Energ. Procedia, 2019, 158, 2250-2255. https://doi.org/10.1016/j.egypro.2019.01.179
  30. D.W. Lee, J.H. Won, K.B. Shm, Mater. Lett., 2003, 57(22-23), 3346-3351. https://doi.org/10.1016/S0167-577X(03)00072-7
  31. M. Popa, M. Kakihana, Solid State Ionics, 2002, 151(1-4), 251-257. https://doi.org/10.1016/S0167-2738(02)00719-1
  32. Y. Sun, J. Li, Y. Zeng, B.S. Amirkhiz, M. Wang, Y. Behnamian, J. Luo, J. Mater. Chem. A, 2015, 3(20), 11048-11056. https://doi.org/10.1039/C5TA01733E
  33. J.W. Yun, S.P. Yoon, H.S. Kim, J. Han, S.W. Nam, Int. J. Hydrogen Energ., 2012. 37(5), 4356-4366.