DOI QR코드

DOI QR Code

2차원 라이다 센서 데이터 분류를 이용한 적응형 장애물 회피 알고리즘

Adaptive Obstacle Avoidance Algorithm using Classification of 2D LiDAR Data

  • 이나라 (강원대학교 메카트로닉스공학과) ;
  • 권순환 (강원대학교 메카트로닉스공학과) ;
  • 유혜정 (강원대학교 메카트로닉스공학과)
  • Lee, Nara (Mechatronics Engineering, Kangwon National University) ;
  • Kwon, Soonhwan (Mechatronics Engineering, Kangwon National University) ;
  • Ryu, Hyejeong (Mechatronics Engineering, Kangwon National University)
  • 투고 : 2020.09.04
  • 심사 : 2020.09.24
  • 발행 : 2020.09.30

초록

This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.

키워드

참고문헌

  1. S. H. Lee, H. C. Lee, and B. H. Lee, "Implementation of a sensor fusion system for autonomous guided robot navigation in outdoor environments", J. Korean Sens. Soc., Vol. 19, No. 3, pp. 246-257, 2010.
  2. M. H. Son, and Y. T. Do, "Vision-Based Mobile Robot Navigation by Robust Path Line Tracking", J. Sens. Sci. and Technol., Vol. 20, No. 3, pp. 178-186, 2011 https://doi.org/10.5369/JSST.2011.20.3.178
  3. O. S. Kwon, "Fish-eye camera calibration and artificial Landmarks detection for the self-charging of a mobile robot", J. Korean Sens. Soc., Vol. 14, No. 4, pp. 278-285, 2005
  4. J. Minguez, and L. Montano, "Nearness diagram (ND) navigation: Collision avoidance in troublesome scenarios", IEEE Trans. Rob. Autom., Vol. 20, No. 1, pp. 45-59, 2004. https://doi.org/10.1109/TRA.2003.820849
  5. M. Mujahed, and H. Jaddu, "Smooth and safe NearnessDiagram (SSND) Navigation for autonomous mobile robots", Adv. Mater. Res., Vol. 403-408, pp. 4718-4726, 2012. https://doi.org/10.4028/www.scientific.net/AMR.403-408.4718
  6. M. Mujahed, H. Jaddu, D. Fischer, and B. Mertsching, "Tangential closest gap based (TCG) reactive obstacle avoidance navigation for cluttered environments", IEEE Int. Symp. On Saf. Secur. Rescue Rob., Linkoping, Sweden, pp. 1-6, 2013.
  7. M. Mujahed, D.Fischer, and B. Mertsching, "Admissible gap navigation: A new collision avoidance approach", Rob. Auton. Syst., Vol. 103, pp. 93-110, 2018 https://doi.org/10.1016/j.robot.2018.02.008
  8. M. Mujahed, D. Fischer, and B. Mertsching, "Safe gap based (SG) reactive navigation for mobile robots", Eur. Conf. Mob. Robot., pp. 325-330, Barcelona, Spain, 2013.
  9. M. Mujahed, D. Fischer, and B. Mertsching, "Tangential Gap Flow (TGF) navigation: A new reactive obstacle avoidance approach for highly cluttered environments", Rob. Auton. Syst, Vol. 84, pp. 15-30, 2016. https://doi.org/10.1016/j.robot.2016.07.001
  10. F. Bonin-Font, J. A. Tobaruela, A. O. Rodriguez, and G. Oliver, "Vision-based mobile robot motion control combining T2 and ND approaches", Robotica, Vol. 32, No. 4, pp. 591-609, 2014. https://doi.org/10.1017/S0263574713000878
  11. J. Minguez, J. Osuna, and L. Montano, "A "divide and conquer" strategy based on situations to achieve reactive collision avoidance in troublesome scenarios", IEEE Int. Conf. on Robot. Autom., pp. 3855-3862, New Orleans, LA, 2004.
  12. J. W. Durham, and F. Bullo, "Smooth Nearness-Diagram Navigation", Int. Conf. on Intell. Robot. Syst., pp. 690-695, Nice, France, 2008.
  13. D. R. Cox, "The Regression Analysis of Binary Sequences", J.R. Stati. Soc. Series B Stat. Methodol., Vol. 20, No. 2, pp.238-238, 1958.
  14. J. Engel, "Polytomous logistic regression", Stat. Neerl., Vol. 42, No. 4, pp. 233-252, 1988. https://doi.org/10.1111/j.1467-9574.1988.tb01238.x
  15. S. H. Walker and D. B. Duncan, "Estimation of the probability of an event as a function of several independent variables", Biometrika, Vol. 54, No. 1-2, pp. 167-179, 1967. https://doi.org/10.1093/biomet/54.1-2.167
  16. J. W. Gibbs, Elementary Principles in Statistical Mechanics., Yale University Press, New Haven, Conn., pp. 32-45, 1902.
  17. M. Mujahad, D. Fischer, B. Mertsching, and H. Jaddu, "Closest Gap based (CG) reactive obstacle avoidance navigation for highly cluttered environments", Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 1805-1812, Taipei, Taiwan, 2010.