References
- Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the effect of thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory", Symmetry, 11(3), 413. https://doi.org/10.3390/sym11030413.
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Mech. Tech. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
- Biswas, S. (2019a), "Modeling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field", Mech. Based Des. Struct. Mach., 47(3), 302-318. https://doi.org/10.1080/15397734.2018.1548968.
- Biswas, S. (2019b), "Modeling of memory-dependent derivatives with the state-space approach", Multidisc. Model. Mat Struct., 16(4), 657-677. https://doi.org/10.1108/MMMS-06-2019-0120.
- Biswas, S. and Mukhopadhyay, B. (2018), "Eigenfunction expansion method to analyze thermal shock behavior in magneto-thermoelastic orthotropic medium under three theories", J. Therm. Stresses, 41(3), 366-382. https://doi.org/10.1080/01495739.2017.1393780.
- Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017), "Thermal shock response in magneto-thermoelastic orthotropic medium with three-phase-lag model", J. Electromag. Waves Appl., 31(9), 879-897. https://doi.org/10.1080/09205071.2017.1326851.
- Chandrasekharaiah, D.S. (1996) A uniqueness theorem in the theory of thermoelasticity without energy dissipation", J. Therm. Stresses, 19(3), 267-272. https://doi.org/10.1080/01495739608946173.
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984.
- Chirita, S. and Ciarletta, M. (2010), "Reciprocal and variational principles in linear thermoelasticity without energy dissipation", Mech. Res. Commun., 37(3), 271-275. https://doi.org/10.1016/j.mechrescom.2010.03.001.
- Choudhuri, S.R. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stresses, 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
- Ciarletta, M. (1999), "A theory of micropolar thermoelasticity without energy dissipation", J. Therm. Stresses, 22(6) 581-594. https://doi.org/10.1080/014957399280760.
- El-Karamany, A.S. and Ezzat, M.A. (2011), "On the two-temperature Green-Naghdi thermoelasticity theories", J. Therm. Stresses, 34(2), 1207-1226. https://doi.org/10.1080/01495739.2011.608313.
- El-Karamany, A.S. and Ezzat, M.A. (2016), "On the phase-lag Green-Naghdi thermoelasticity theories", Appl. Math. Model., 40(9-10), 5643-5659. https://doi.org/10.1016/j.apm.2016.01.010.
- Ezzat, M.A. (2008), "State space approach to solids and fluids", Can. J. Phys., 86(11), 1241-1250. https://doi.org/10.1139/P08-069.
- Ezzat, M.A. and El-Bary, A.A. (2016), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struct. Syst., 18(4), 707-731. https://doi.org/10.12989/sss.2016.18.4.707.
- Ezzat, M.A. and El-Bary, A.A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., 25(2),177-186. https://doi.org/10.12989/scs.2017.25.2.177.
- Ezzat, M.A. and Youssef, H.M. (2010), "Stokes' first problem for an electro-conducting micropolar fluid with thermoelectric properties", Can. J. Phys., 88(1) 35-48. https://doi.org/10.1139/P09-100.
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A. (2016), "Electro-thermoelasticity theory with memory-dependent derivative heat transfer", Int. J. Eng. Sci., 99(2), 22-38. https://doi.org/10.1016/j.ijengsci.2015.10.011.
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A. (2018), "Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6.
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2015), "A novel magneto-thermoelasticity theory with memory-dependent derivative", J. Electromag. Waves Appl., 29(8), 1018-1031. https://doi.org/10.1080/09205071.2015.1027795.
- Ghazanfarian, J., Shomali, Z. and Abbassi, A. (2015), "Macro- to nano scale heat and mass transfer: The lagging behavior", Int. J. Thermophys., 36(7), 1416-1467. https://doi.org/10.1007/s10765-015-1913-4.
- Green, A. and Lindsay, K. (1972), "Thermoelasticity", J. Elasticity, 2(1), 1-7. https://doi.org/10.1007/BF00045689.
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Royal Soc. London A, 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stresses, 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31(3), 189-208. https://doi.org/10.1007/BF00044969.
- Hetnarski, R.B. and Ignaczak, J. (2000), "Nonclassical dynamical thermoelasticity", Int. J. Solids Struct., 37(1), 215-224. https://doi.org/10.1016/S0020-7683(99)00089-X.
- Hiroshige, Y., Makoto, O. and Toshima, N. (2007), "Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene", Synth. Metals., 157(10-12), 467-474. https://doi.org/10.1016/j.synthmet.2007.05.003.
- Hohn, C., Galffy, M., Dascoulidou, A., Freimuth, A., Soltner, H. and Poppe, U. (1991), "Seebeck-effect in the mixed state of Y-Ba-Cu-O", Z. Phys. B., 85(2),161-168. https://doi.org/10.1007/BF01313216.
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
- Kaliski, S. and Nowacki, W. (1963), "Combined elastic and electro-magnetic waves produced by thermal shock in the case of a medium of finite electric conductivity", Int. J. Eng. Sci., 1(2), 163-175. https://doi.org/10.1016/0020-7225(63)90031-4.
- Kothari, S. and Mukhopadhyay, S.A. (2011), "Problem on elastic half space under fractional order theory of thermoelasticity", J. Therm. Stresses, 34, 724-739. https://doi.org/10.1080/01495739.2010.550834.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Effect of Hall current in a transversely isotropic magnetothermoelastic two temperature medium with rotation and with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091.
- Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. https://doi.org/10.12989/scs.2019.32.6.779.
- Lata, P. and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solitidue to inclined load", Steel Comps. Struct., 33(1), 955-963. https://doi.org/10.12989/scs.2019.33.1.123.
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567.
- Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Lotfy, K. and Sarkar, N. (2017), "Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature", Mech. Time-Dep. Mater., 21(4), 519-534. https://doi.org/10.1007/s11043-017-9340-5.
- Mahan, G., Sales, B. and Sharp, J. (1997), "Thermoelectric materials: New approaches to an old problem", Phys. Today, 50(3), 42-47. https://doi.org/10.1063/1.881752.
- Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", Comptes Rendus de l'Academie des Sciences Paris, 321(12), 375-480.
- Marin, M. (1996), "Some basic theorems in elastostatics of micropolar materials with voids", J. Comput. Appl. Math., 70(1), 115-126. https://doi.org/10.1016/0377-0427(95)00137-9.
- Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlin. Anal., 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001.
- Marin, M. (2010), "A partition of energy in thermoelasticity of microstretch bodies", Nonlin. Anal., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014.
- Marin, M. and Lupu, M. (1998), "On harmonic vibrations in thermoelasticity of micropolar bodies", J. Vib. Control, 4(5), 507-518. https://doi.org/10.1177/107754639800400501.
- Marin, M. and Stan, G. (2013), "Weak solutions in elasticity of dipolar bodies with stretch", Car. J. Math., 29(1), 33-40. https://doi.org/10.37193/CJM.2013.01.12
- Mukhopadhyay, S. and Kumar, R. (2009), "Thermoelastic interactions on two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity", J. Therm. Stresses, 32(4), 341-360. https://doi.org/10.1080/01495730802637183.
- Othman, M.I., Ezzat, M.A., Zaki, S.A. and El-Karamany, A.S. (2002), "Generalized thermo-viscoelastic plane waves with two relaxation times", Int. J. Eng. Sci., 40(12), 1329-1347. https://doi.org/10.1016/S0020-7225(02)00023-X.
- Povstenko, Y.Z. (2009), "Thermoelasticity that uses fractional heat conduction equation", J. Math. Sci., 162(2), 296-305. https://doi.org/10.1007/s10958-009-9636-3.
- Rowe, D.M. (1995), Handbook of Thermoelectrics, CRC Press.
- Sharma, K. (2010), "Boundary value problem in generalized thermodiffusive elastic medium", J. Solid Mech., 2(4), 348-362.
- Sharma, S. and Sharma, K. (2014), "Influence of heat sources and relaxation time on temperature distribution in tissues", Int. J. Appl. Mech. Eng., 19(2), 427-433. https://doi.org/10.2478/ijame-2014-0029.
- Sharma, S., Sharma, K. and Bhargava, R. (2016), "Effect of viscosity on wave propagation in anisotropic thermoelastic Green-Naghdi theory type-II and type-III", Mater. Phys. Mech., 16(2), 144-158.
- Shaw, S. (2019), "Theory of generalized thermoelasticity with memory-dependent derivatives", J. Eng. Mech., 145(3), 04019003. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001569.
- Shercliff, J.A. (1979), "Thermoelectric magnetohydrodynamics", J. Fluid Mech., 191(3), 231-251. https://doi.org/10.1017/S0022112079000136.
- Sherief, H., El-Sayed, A.M.A. and Abd El-Latief, A.M. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034.
- Sherief, H.H. (1986), "Fundamental solution of generalized thermoelastic problem for short times", J. Therm. Stress., 9(2), 151-164. https://doi.org/10.1080/01495738608961894.
- Sherief, H.H. and Raslan, W.E. (2016), "Thermoelastic interactions without energy dissipation in an unbounded body with a cylindrical cavity", J. Therm. Stresses, 39(3), 326-332. https://doi.org/10.1080/01495739.2015.1125651.
- Sur, A. and Kanoria, M. (2019), "Memory response on thermal wave propagation in an elastic solid with voids", Mech. Based Des. Struct. Mach., 48(3), 326-347. https://doi.org/10.1080/15397734.2019.1652647.
- Tiwari, R. and Mukhopadhyay, S. (2018), "Analysis of wave propagation in the presence of a continuous line heat source under heat transfer with memory dependent derivatives", Math. Mech. Solids, 23(5), 820-834. https://doi.org/10.1177/1081286517692020.
- Tritt, T.M. (2000), Semiconductors and Semimetals, in Recent Trends in Thermoelectric Materials Research, Academic Press, San Diego, California, U.S.A.
- Tschoegl, N.W. (1997), "Time dependence in material properties: An overview", Mech. Time-Depend. Mat., 1(1), 3-31. https://doi.org/10.1023/A:1009748023394.
- Wang, J.L. and Li, H.F. (2011), "Surpassing the fractional derivative: Concept of the memory-dependent derivative", Comput. Math. Appl., 62(3), 1562-1567. https://doi.org/10.1016/j.camwa.2011.04.028.
- Xue, Z.N., Chen, Z.T. and Tian, X.G. (2018), "Thermoelastic analysis of a cracked strip under thermal impact based on memory-dependent heat conduction model", Eng. Fract. Mech., 200, 479-498. https://doi.org/10.1016/j.engfracmech.2018.08.018.
- Yu, B., Jiang, X. and Xu, H. (2015), "A novel compact numerical method for solving the two dimensional non-linear fractional reaction-subdiffusion equation", Num. Algor., 68(4), 923-950. https://doi.org/10.1007/s11075-014-9877-1.
- Yu, Y.J. and Deng, Z.C. (2020), "New insights on microscale transient thermoelastic responses for metals with electron-lattice coupling mechanism", Eur. J. Mech. A/Solids, 80, 103887. https://doi.org/10.1016/j.euromechsol.2019.103887.
- Yu, Y.J., Hu, W. and Tian, X.G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81(3-4), 123-134. https://doi.org/10.1016/j.ijengsci.2014.04.014.
- Yu, Y.J., Tian, X.G. and Tian, J.L. (2013), "Fractional order generalized electro-magneto-thermo-elasticity", Eur. J. Mech. A/Solids, 42,188-202. https://doi.org/10.1016/j.euromechsol.2013.05.006.
- Zhang, H., Jiang, X. and Yang, X. (2018), "A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem", Appl. Math. Comput., 320, 302-318. https://doi.org/10.1016/j.amc.2017.09.040.