• Title/Summary/Keyword: Green-Naghdi of type III

Search Result 8, Processing Time 0.019 seconds

Modeling of GN type III with MDD for a thermoelectric solid subjected to a moving heat source

  • Ezzat, Magdy A.
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2020
  • We design the Green-Naghdi model type III (GN-III) with widespread thermoelasticity for a thermoelectric half space using a memory-dependent derivative rule (MDD). Laplace transformations and state-space techniques are used in order to find the general solution for any set of limit conditions. A basic question of heat shock charging half space and a traction-free surface was added to the formulation in the present situation of a traveling heat source with consistent heating speed and ramp-type heating. The Laplace reverse transformations are numerically recorded. There are called the impacts of several calculations of the figure of the value, heat source spead, MDD parameters, magnetic number and the parameters of the ramping period.

The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory

  • Alzahrani, Faris S.;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.369-386
    • /
    • 2016
  • In this work, the two-dimensional generalized magneto-thermoelastic problem of a fiber-reinforced anisotropic material is investigated under Green and Naghdi theory of type III. The solution will be obtained for a certain model when the half space subjected to ramp-type heating and traction free surface. Laplace and exponential Fourier transform techniques are used to obtain the analytical solutions in the transformed domain by the eigenvalue approach. The inverses of Fourier transforms are obtained analytically. The results have been verified numerically and are represented graphically. Comparisons are made with the results predicted by the presence and absence of reinforcement and magnetic field.

Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model

  • Othman, Mohamed I.A.;Alharbi, Amnah M.;Al-Autabi, Al-Anoud M. Kh.
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.447-459
    • /
    • 2020
  • This paper aims to investigate the effect of rotation on a micropolar thermoelastic medium with voids problem. The problem is assessed according to three-phase-lag model. The normal mode analysis used to obtain the analytical expressions of the considered variables. The non-dimensional displacement, temperature, Micro rotation, the change in the volume fraction field, and stress of the material are obtained and illustrated graphically. Comparisons are made with the results predicted by two theories; namely three- phase-lag model (3PHL) and Green-Naghdi theory of type III (G-N III). The considered variables were plotted for different values of the rotation parameter, the phase-lag of heat flux and the phase-lag of temperature. The numerical results reveal that the rotation and the phase-lag times significantly influence the distribution of the field quantities. Some particular cases of interest are deduced from the present investigation.

Representation of fundamental solution and vibration of waves in photothermoelastic under MGTE model

  • Rajneesh Kumar;Nidhi Sharma;Supriya Chopra;Anil K. Vashishth
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.123-146
    • /
    • 2023
  • In this paper, Moore-Gibson-Thompson theory of thermoelasticity is considered to investigate the fundamental solution and vibration of plane wave in an isotropic photothermoelastic solid. The governing equations are made dimensionless for further investigation. The dimensionless equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature distribution and carrier density distribution). Fundamental solutions are constructed for the system of equations for steady oscillation. Also some preliminary properties of the solution are explored. In the second part, the vibration of plane waves are examined by expressing the governing equation for two dimensional case. It is found that for the non-trivial solution of the equation yield that there exist three longitudinal waves which advance with the distinct speed, and one transverse wave which is free from thermal and carrier density response. The impact of various models (i)Moore-Gibson-Thomson thermoelastic (MGTE)(2019), (ii) Lord and Shulman's (LS)(1967) , (iii) Green and Naghdi type-II(GN-II)(1993) and (iv) Green and Naghdi type-III(GN-III)(1992) on the attributes of waves i.e., phase velocity, attenuation coefficient, specific loss and penetration depth are elaborated by plotting various figures of physical quantities. Various particular cases of interest are also deduced from the present investigations. The results obtained can be used to delineate various semiconductor elements during the coupled thermal, plasma and elastic wave and also find the application in the material and engineering sciences.

A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field

  • Said, Samia M.
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.159-166
    • /
    • 2022
  • The model of two-dimensional plane waves is analyzed in a micropolar-thermoelastic solid with microtemperatures in the context of the three-phase-lag model, dual-phase-lag model, and the Green-Naghdi theory of type III. Harmonic wave analysis is used to hold the solution to the problem. Numerical results of the physical fields are visualized to show the effects of the gravity field, magnetic field, and viscosity. The expression for the field variables is obtained generally and represented graphically for a particular medium.

Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity

  • Said, Samia M.;Abd-Elaziz, Elsayed M.;Othman, Mohamed I.A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.617-629
    • /
    • 2020
  • The purpose of this paper is to depict the effect of rotation and initial stress on a magneto-thermoelastic medium with diffusion. The problem discussed within memory-dependent derivative in the context of the three-phase-lag model (3PHL), Green-Naghdi theory of type III (G-N III) and Lord and Shulman theory (L-S). Analytical expressions of the considered variables are obtained by using Laplace-Fourier transforms technique. Numerical results for the field quantities given in the physical domain and illustrated graphically in the absence and presence of a magnetic field, initial stress as well as the rotation. The differences in variable thermal conductivity are also presented at different parameter of thermal conductivity. The numerical results of the field variables are presented graphically to discuss the effect of various parameters of interest. Some special cases are also deduced from the present investigation.

Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force

  • Kumar, Rajneesh;Sharma, Nidhi;Lata, Parveen
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.91-103
    • /
    • 2016
  • This investigation is concerned with the disturbances in a homogeneous transversely isotropic thermoelastic rotating medium with two temperature, in the presence of the combined effects of Hall currents and magnetic field due to normal force of ramp type. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi Theories of Type-II and Type-III. Laplace and Fourier transform technique is applied to solve the problem. The analytical expressions of displacements, stress components, temperature change and current density components are obtained in the transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically to show the effects of Hall current and anisotropy on the resulting quantities. Some special cases are also deduced from the present investigation.

Rayleigh waves in anisotropic magnetothermoelastic medium

  • Kumar, Rajneesh;Sharma, Nidhi;Lata, Parveen;Abo-Dahab, S.M.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.317-333
    • /
    • 2017
  • The present paper is concerned with the investigation of Rayleigh waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature, in the presence of Hall current and rotation. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi theories of Type-II and Type-III. Secular equations are derived mathematically at the stress free and thermally insulated boundaries. The values of Determinant of secular equations, phase velocity and Attenuation coefficient with respect to wave number are computed numerically. Cobalt material has been chosen for transversely isotropic medium and magnesium material is chosen for isotropic solid. The effects of rotation, magnetic field and phase velocity on the resulting quantities and on particular case of isotropic solid are depicted graphically. Some special cases are also deduced from the present investigation.