DOI QR코드

DOI QR Code

Vibration of SWCNTs: Consistency and behavior of polynomial law index with Galerkin's model

  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Government College Universit Faisalabad) ;
  • Khedher, Khaled Mohamed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Bouzgarrou, Souhail Mohamed (Civil Engineering Department, Faculty of Engineering, Jazan University) ;
  • Al Naim, Abdullah F. (Department of Physics, College of Science, King Faisal University) ;
  • Naeem, Muhammad Nawaz (Department of Mathematics, Government College Universit Faisalabad) ;
  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Iqbal, Zafar (Department of Mathematics, University of Sargodha) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.04.04
  • Accepted : 2020.09.28
  • Published : 2020.11.25

Abstract

In this article, vibration attributes of single walled carbon nanotubes based on Galerkin's method have been investigated. The influence of power law index subjected to different end supports has been overtly examined. Application of the Hamilton's variational principal leads to the formation of partial differential equations. The effects of different physical and material parameters on the fundamental frequencies are investigated for armchair and zigzag carbon nanotubes with clamped-clamped, simply supported and clamped-free boundary conditions. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of Single-Walled Carbon Nanotubes (SWCNTs) are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. MATLAB software package has been utilized for extracting tube frequency spectra. The obtained results are confirmed by comparing with available literature.

Keywords

Acknowledgement

The research team thanks the efforts of King Khalid University in financing this applied research and providing all the facilities (laboratories, hardware, and software) in the College of Engineering. In addition, special thanks to Civil Engineering Department where this applied research work achieved. Finally, thanks again to Deanship of Scientific Research in King Khalid University to continue to support scientific research until it becomes among the best universities locally and internationally. Within the framework of small research projects given by the Deanship of Scientific Research the grant number is 123.

References

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., Int. J., 35(1), 147-57. https://doi.org/10.12989/scs.2020.35.1.147.
  2. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., Int. J., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
  3. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  4. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. http://dx.doi.org/10.12989/sem.2016.59.3.579.
  5. Akbas, S.D. (2016c), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143.
  6. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
  7. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  8. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. http://dx.doi.org/10.12989/anr.2018.6.1.039.
  9. Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", J. Braz. Soc. Mech. Sci. Engineering, 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1.
  10. Akbas, S.D. (2018c), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., Int. J., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
  11. Akbas, S.D. (2019a), "Longitudinal forced vibration analysis of porous a nanorod", Muhendislik Bilimleri Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328.
  12. Akbas, S.D. (2019b), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392.
  13. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., Int. J., 8(4), 277-282. http://dx.doi.org/10.12989/anr.2020.8.4.277.
  14. AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., Int. J., 25(1), 111-122. https://doi.org/10.12989/sss.2020.25.1.111.
  15. Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. http://dx.doi.org/10.12989/sss.2016.18.4.787.
  16. Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., Int. J., 19(1), 33-38. https://doi.org/10.12989/sss.2017.19.1.033.
  17. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  18. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., Int. J., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  19. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmadi, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  20. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339
  21. Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamic", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140.
  22. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., Int. J., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  23. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  24. Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., Int. J., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283.
  25. Flugge, S. (1973), Stresses in Shells, Springer, Berlin, Germany.
  26. Flugge, W. (1962), Stresses in Shells Second Edition, Springer-Verlag, Berlin, Germany.
  27. Forsberg, K. (1962), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Am. Inst. Aero. Astro., 2, 182-189.
  28. Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E Low Dimens. Syst. Nanostruct., 42(9), 2406-2415. https://doi.org/10.1016/j.bbrc.2009.07.042.
  29. Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 67(1), 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031.
  30. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
  31. Han, J., Globus, A., Jaffe, R. and Deardorff, G. (1997), "Molecular dynamics simulations of carbon nanotube-based gears", Nanotechnology, 8(3), 95. https://doi.org/10.1088/0957-4484/8/3/001.
  32. Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. http://doi.org/10.1016/j.compstruct.2014.06.023.
  33. Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M.S. (2001), "Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering", Phys. Rev. Lett., 86(6), 1118-1121. https://doi.org/10.1103/PhysRevLett.86.1118.
  34. Kotakoski, J., Krasheninnikov, A.V. and Nordlund, K. (2006), "Energetics, structure and long-range interaction of vacancytype defects in carbon nanotubes: Atomistic simulations", Phys. Rev. B, 74, 245420. https://doi.org/10.1103/PhysRevB.74.245420.
  35. Krommer, M., Vetyukova, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: buckling and post-buckling behavior", Smart Struct. Syst., Int. J., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155.
  36. Kulathunga, D.D.T.K., Ang, K.K. and Reddy, J.N. (2009), "Accurate modeling of buckling of single-and double-walled carbon nanotubes based on shell theories", J. Phys. Condens. Matter, 21(43), 435301. https://doi.org/10.1088/0953-8984/21/43/435301.
  37. Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., Int. J., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525.
  38. Madani, H. Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  39. Moazzez, K., Googarchin, H.S. and Sharifi, S.M.H. (2018), "Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing line-spring model", Thin-Wall. Struct., 125, 63-75. https://doi.org/10.1016/j.tws.2018.01.009.
  40. Moghadam, R.M., Hosseini, S.A. and Salehi, M. (2014), "The influence of stone-thrower-wales defect on vibrational characteristics of single-walled carbon nanotubes incorporating Timoshenko beam element", Physica E Low Dimens. Syst. Nanostruct., 62, 80-89. https://doi.org/10.1016/j.physe.2014.04.008.
  41. Natsuki, T., Endo, M. and Tsuda, H. (2006), "Vibration analysis of embedded carbon nanotubes using wave propagation approach", J. Appl. Phys., 99(3), 034311. https://doi.org/10.1063/1.2170418.
  42. Nebab, M., Atmane, H.A., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., Int. J., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
  43. Paliwal, D.N., Kanagasabapathy, H. and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31(1), 31-37. https://doi.org/10.1016/0263-8223(94)00068-9.
  44. Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the prestress-accumulation release control approach", Smart Struct. Syst., Int. J., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027.
  45. Rouhi, H., Ansari, R. and Arash, B. (2013), "Vibration analysis of double-walled carbon nanotubes based on the non-local donnell shell via a new numerical approach", Int J. Mech. Sci., 37, 91-105. https://doi.org/10.1016/0020-7403(94)00042-I
  46. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  47. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., Int. J., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  48. Selim, M.M. (2010), "Torsional vibration of carbon nanotubes under initial compression stress", Braz. J. Phys., 40(3), 283-287. http://dx.doi.org/10.1590/S0103-97332010000300004.
  49. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. http://dx.doi.org/10.12989/anr.2019.7.2.089.
  50. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  51. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  52. Sodel, W. (1981), Vibration of Shell and Plates, Mechanical Engineering Series, New York, USA.
  53. Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527.
  54. Usuki, T. and Yogo, K. (2009), "Beam equations for multi-walled carbon nanotubes derived from Flugge shell theory", Proc. Royal Soc. A., 465(2104), 1199-1226. https://doi.org/10.1098/rspa.2008.0394.
  55. Wang, J. and Gao, Y. (2016), "Nonlocal orthotropic shell model applied on wave propagation in microtubules", Appl. Math. Model., 40(11-12), 5731-5744. https://doi.org/10.1016/j.apm.2016.01.013.
  56. Wang, V. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nanostructures", Phys. Lett. A, 363, 236-242. http://dx.doi.org/10.1016/j.physleta.2006.10.093.
  57. Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7(4), 399-407. https://doi.org/10.1243/JMES_JOUR_1965_007_062_02.
  58. Xuebin, L. (2008), "Study on free vibration analysis of circular cylindrical shells using wave propagation", J. Sound Vib., 311, 667-682. https://doi.org/10.1016/j.jsv.2007.09.023.
  59. Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233.
  60. Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., Int. J., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391.
  61. Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of singlewalled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1, 89-106.
  62. Zou, R.D. and Foster, C.G. (1995), "Simple solution for buckling of orthotropic circular cylindrical shells", Thin-Wall. Struct., 22(3), 143-158. https://doi.org/10.1016/0263-8231(94)00026-V.