• Title/Summary/Keyword: frequency spectra

Search Result 682, Processing Time 0.027 seconds

Two-Dimensional Correlation Analysis of Sum-Frequency Vibrational Spectra of Langmuir Monolayers

  • Lee, Jonggwan;Sung, Woongmo;Kim, Doseok
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.558-563
    • /
    • 2014
  • Sum-frequency generation spectra of a Langmuir monolayer on water surface at varying surface areas were studied with two-dimensional correlation analysis. Upon enlarging the area/molecule of the Langmuir monolayer, the sum-frequency spectra changed reflecting the conformation change of the alkyl chains of the molecules in the monolayer. These changes stood out more clearly by employing two-dimensional correlation analysis of the above sum-frequency spectra. Features not very pronounced in the original spectra such as closely-spaced spectral bands can also be easily distinguished in the two-dimensional correlation spectra.

Pseudo-Randomized Frequency Carrier Modulation Scheme with Improved Harmonics Spectra Spreading Effects (고조파 스펙트럼 확산효과를 개선한 준 랜덤 주파수 캐리어 변조기법)

  • Kim, Jong-Nam;Jung, Young-Gook;Lim, Young-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.64-70
    • /
    • 2008
  • In case that conventional PRC(Pseudo-Randomized Frequency Carrier) modulation scheme is applied to a three-phase HBML(H-Bridge Multi-Level Inverter), the dominant harmonics spectra appear at twice switching frequency. In this paper, the dominant harmonics spectra spreading effect of the conventional PRC scheme was improved by using three stage MUXs(Multiplexers) and two triangular carriers with fixed frequency which has mutual relation of the twice frequency. To confirm the validity of the improved PRC scheme, the experiment were performed on a 1.5[kw] three-phase HBML based induction motor drives. And, the harmonics spectra of the conventional and improved PRC schemes are compared and discussed.

Probabilistic study of the influence of ground motion variables on response spectra

  • Yazdani, Azad;Takada, Tsuyoshi
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.877-893
    • /
    • 2011
  • Response spectra of earthquake ground motions are important in the earthquake-resistant design and reliability analysis of structures. The formulation of the response spectrum in the frequency domain efficiently computes and evaluates the stochastic response spectrum. The frequency information of the excitation can be described using different functional forms. The shapes of the calculated response spectra of the excitation show strong magnitude and site dependency, but weak distance dependency. In this paper, to compare the effect of the earthquake ground motion variables, the contribution of these sources of variability to the response spectrum's uncertainty is calculated by using a stochastic analysis. The analytical results show that earthquake source factors and soil condition variables are the main sources of uncertainty in the response spectra, while path variables, such as distance, anelastic attenuation and upper crust attenuation, have relatively little effect. The presented formulation of dynamic structural response in frequency domain based only on the frequency information of the excitation can provide an important basis for the structural analysis in some location that lacks strong motion records.

Application of frequency domain analysis for generation of seismic floor response spectra

  • Ghosh, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.17-26
    • /
    • 2000
  • This paper presents a case study with a multi-degree-of-freedom (MDOF) system where the Floor Response Spectra (FRS) have been derived from a large ensemble of ground motion accelerograms. The FRS are evaluated by the frequency response function which is calculated numerically. The advantage of this scheme over a repetitive time-history analysis of the entire structure for each accelerogram of the set has been highlighted. The present procedure permits generation of FRS with a specified probability of exceedence.

Characteristics of the Low Frequency Sequence Bands Observed in the Vibronic Emission Spectra of the Jet Cooled p-Fluorobenzyl Radical in the $D-1\rightarrow D_0$ Transition

  • 백대열;이상국
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1359-1363
    • /
    • 1998
  • The p-fluorobenzyl radical was generated from the p-fluorotoluene and vibronically excited in a corona excited supersonic expansion with inert buffer gases. The vibronic emission spectra of the jet cooled p-fluorobenzyl radical in the D1 → D0 transition have been observed in the visible region. The spectra exhibit several low frequency sequence bands in the vicinity of the every strong vibronic band. The characteristics of the sequence bands have been examined by varying the experimental conditions such as carrier gas and nozzle size to identify the origin of the transition in the spectra.

Characteristics of Power Spectrum according to Variation of Passenger Number and Vehicle Speed (둔턱 진행 차량의 승객수와 속도에 따른 파워스펙트럼 특성분석)

  • Lee, Hyuk;Kim, Jong-Do;Yoon, Moon-chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2022
  • Vehicle vibration was introduced in the time and frequency domains using fast Fourier transform (FFT) analysis. In particular, a vibration mode analysis and characteristics of the frequency response function (FRF) in a sport utility vehicle (SUV) passing over a bump barrier at different speeds was performed systematically. The response behavior of the theoretical acceleration was obtained using a numerical method applied to the forced vibration model. The amplitude and frequency of the external force on the vehicle cause various power spectra with individual intrinsic system frequencies. In this regard, several modes of power spectra were acquired from the spectra and are discussed in this paper. The proposed technique can be used for monitoring the acceleration in a vehicle passing over a bump barrier. To acquire acceleration signals, various experimental runs were performed using the SUV. These acceleration signals were then used to acquire the FRF and to conduct mode analysis. The vehicle characteristics according to the vehicle condition were analyzed using FRF. In addition, the vehicle structural system and bump passing frequencies were discriminated based on their power spectra and other FRF spectra.

A Study on Stethoscope Signal Analysis for Normal and Heart-diseased Children (정상 및 심질환 소아의 청진음 분석에 관한 연구)

  • Kim, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.715-720
    • /
    • 2017
  • This study tries to analyze morphology and formant frequencies of linear prediction spectra of stethoscope sounds for heart diseased children. For this object, heart diseased stethoscope sounds were collected in the pediatrics of an university hospital. The collected signals were preprocessed and analyzed by the Burg algorithm, a kind of linear prediction analysis. The linear prediction spectra and the formant frequencies of the spectra for the stethoscope sounds for the normal and the diseased children are estimated and compared. The spectra showed outstanding differences in morphology and formant frequencies between the normal and the diseased children. Normal children showed relatively low frequency of F1(the first formant) and small negative slope from F1. VSD children revealed stiff slope change around F1 to F3. Spectra of ASD children is similar with the normal case, but have negative values of F3. F1-F2 difference of the functional murmur children were relatively large.

Frequency Selective Recursive LP of Discrete Harmonic Spectra for Audio Cording

  • Nam, Seung-Hyon
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • n this paper, an efficient LP method for discrete harmonic spectra is proposed and discussed. A new efficient LP method is a combination of recursive and frequency selective LP. While the recursive LP provides better spectral matching in spectral hill, frequency selective LP eliminates numerical instability and improves spectral matching when the harmonics are confined in the low frequency region. The proposed LP method is applied to the HILN coder. Simulation results using a verification model(VM) software for real audio signals show a definite trend of significant improvement.

  • PDF

Frequency Spectra of AC Signal Generated from the Operation of Cast-Resin Power Transformer (운전중인 몰드형 전력변압기의 음향방출신호에 대한 주파수 스펙트럼 특성)

  • 구경철;이상우;이동인;이광식;김인식;김이국;신용철
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.246-250
    • /
    • 2000
  • In this paper, Frequency spectra of AE(acoustic emission) signals generated from the magnetizing and the load currents in the actual operating cast-resin power transformer of 500[kVA] under distribution system of22.9[kV] were also analysed to distinguish the AE signals due to void discharges from the magnetic circuit noises in the core of cast-resin power transformer. As the experimental results, we could distinguish the AE signals whether those signals were caused due to the void discharges or due to the magnetic circuit noises by analyzing the frequency spectrum of AE signals. Frequency spectra of AE signals generated from the cast-resin power transformer in operation due to both the magnetizing and the load currents appeared in the range of 40-120[khz].

  • PDF

An improved time-domain approach for the spectra-compatible seismic motion generation considering intrinsic non-stationary features

  • Feng Cheng;Jianbo Li;Zhixin Ding;Gao Lin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.968-980
    • /
    • 2023
  • The dynamic structural responses are sensitive to the time-frequency content of seismic waves, and seismic input motions in time-history analysis are usually required to be compatible with design response spectra according to nuclear codes. In order to generate spectra-compatible input motions while maintaining the intrinsic non-stationarity of seismic waves, an improved time-domain approach is proposed in this paper. To maintain the nonstationary characteristics of the given seismic waves, a new time-frequency envelope function is constructed using the Hilbert amplitude spectrum. Based on the intrinsic mode functions (IMFs) obtained from given seismic waves through variational mode decomposition, a new corrective time history is constructed to locally modify the given seismic waves. The proposed corrective time history and time-frequency envelope function are unique for each earthquake records as they are extracted from the given seismic waves. In addition, a dimension reduction iterative technique is presented herein to simultaneously superimpose corrective time histories of all the damping ratios at a specific frequency in the time domain according to optimal weights, which are found by the genetic algorithm (GA). Examples are presented to show the capability of the proposed approach in generating spectra-compatible time histories, especially in maintaining the nonstationary characteristics of seismic records. And numerical results reveal that the modified time histories generated by the proposed method can obtain similar dynamic behaviors of AP1000 nuclear power plant with the natural seismic records. Thus, the proposed method can be efficiently used in the design practices.