DOI QR코드

DOI QR Code

Evaluation of a Traffic Light System Focusing on Autonomic Nervous System Activity for Overcoming Yellow Signal Dilemma

황색신호 딜레마 극복을 위한 자율신경계 활성도 중심의 신호체계 평가

  • 조형석 (한밭대학교 산업경영공학과) ;
  • 김규범 (한밭대학교 산업경영공학과) ;
  • 안석현 (한밭대학교 산업경영공학과) ;
  • 민병찬 (한밭대학교 산업경영공학과)
  • Received : 2020.04.22
  • Accepted : 2020.06.22
  • Published : 2020.09.30

Abstract

This study is aimed at investigating drivers' reactions to yellow signal dilemma situations as a result of the existing signal system, and developing a new signal system. A driver-centered coping model was developed through bio-signal analysis. The driver's physiological response in the existing signal system was observed, and the signal system was developed by applying intersection road driving conditions using a car graphic simulator. Participants were classified into a control group (existing signal system) and an experimental group for a new yellow signal system (new signal system). Based on the results, the emergence of parasympathetic nerves was higher in the experimental group than in the control group, where a statistically significant difference was observed (p < 0.05). The newly developed signal system appeared to cause tension among drivers; however, the sympathetic to parasympathetic nerve ratio was 6: 4, which could be interpreted as an ideal balance. We conclude that drivers can drive more stably if the coping signal system developed in this study is applied to the traffic system.

본 연구에서는 기존의 신호체계에서 발생하는 황색 신호 딜레마 상황에서 운전자의 상태를 파악하고 새로운 신호체계를 제안하고자 한다. 특히, 생체신호 분석을 통해 운전자 중심의 대처모형을 제안한다. 이를 위해 자동차 그래픽 시뮬레이터를 통해 교차로 도로 주행상황을 구현하여 기존의 신호체계와 본 연구에서 제안하는 신호체계에서 운전자의 생리적 반응을 관찰하여 규명하고자 한다. 따라서 대조군(기존 신호체계)과 새로운 황색 신호체계를 실험군(새로운 신호체계)으로 나누어 20대 초보 운전자를 중심으로 실험을 진행하였다. 그 결과, 대조군보다 실험군에서 교감신경의 출현이 우세하였으며 통계적으로 유의차가 인정되었다(p<0.05). 이를 통해 새로운 신호체계가 운전자가 긴장감을 유발하는 것처럼 보이지만 교감신경과 부교감신경의 비율이 6:4로 이상적인 균형으로 해석할 수 있다. 결론적으로, 본 연구에서 제안하는 대처 신호체계를 교통체계에 적용한다면 운전자가 더욱 안정적인 주행이 가능할 것으로 보인다.

Keywords

References

  1. Jang, E. H., Kim, A. Y., Jang, Y. W., Kim, B. S., Choi, Y. B., Kim, S. C., Lee, S. K., & Kim, S. H. (2019). Effects of the combination of oxygen and color light on stress relaxation: Psycholohical and autonomic responses. Science of Emotion & Sensibility, 22(1), 55-64. DOI: 10.14695/KJSOS.2018.22.1.55
  2. Jang, Y. K. (2000). The Development of a detector design method and a signal control strategy to clear a dilemma zone. (Master dissertation). Ajou University, Suwon, Korea.
  3. Kim, B. S., Kang, J. K., Min, B. C., & Min, Y. K. (2010). The changes of the cognitive load’s level and the heart-rate due to driving road condition complexity. Journal of The Korean Data Analysis Society, 11(1), 241-251.
  4. Kim, M. S., Kim, Y. N., & Heo, Y. S. (2014). Characteristics of Heart Rate Variability Derived from ECG during the Driver’s Wake and Sleep States. Transaction of KASE, 22(3), 136-142. DOI: 10.7467/KSAE.2014.22.3.136
  5. Lee, G. D., Kim, M. S., Kim, J. S., Kim, D. G., Oh, J. H., & Yu, S. J. (2012). Effects of blowing to face on driver's sleepiness and ECG. In Proceeding of the Society of Air-Conditioning and Refrigerating Engineers of Korea, 543-546.
  6. Lee, J. U., Lim, S. H., & Ryu, S. G. (2007). A Surveillance Permissible Range of Traffic Light Violation Considering a Dilemma Zone. The Seoul Institute, 8(2), 155-167.
  7. Lee, J. Y., & Lee, J. S. (2004). The effect of traffic signal display patterns on driver's vehicle control in yellow interval dilemma situation. Journal of the Korea Data Analysis Society, 6(6), 1567-1586.
  8. Lee, J. Y., & Lee, J. S. (2005). The effects of traffic signal dis play pattern and signal location on driver’s vehicle control in yellow interval dilemma situation. Research in Psychological Science, 4(-), 161-183.
  9. Lee, S. H., Lee, S. H., & Park, J. N. (2003). A study on driver behavior and dilemma zone during yellow interval at signalized intersections. Journal of Korean Society of Transportation, 21(4), 7-16.
  10. Lee, Y. C., Kim, B. S., Lim, D. H., Kim, H. W., Ji, D. H., Min, B. C., & Min, Y. K. (2010). Autonomic nervous system responses in yellow interval dilemma situation. Journal of the Lorean Data Analysis Society, 12(1), 185-194.
  11. Malik., M. J., Bigger., T., Camm., A. J., Kleiger, R. E., Malliani., A., & Moss, A. J. (1996). Heart rate variability standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381. DOI: 10.1111/j.1542-474X.1996.tb00275.x
  12. Nam, K. S., Ahn, B. J., & Kim, J. H. (2004). Factor extraction of the traffic accident using data mining techniques. Journal of The Korean Data Analysis Society. 6(2), 519-525.
  13. Moon, K. S., Hwang, K. I., Choi, E. J., & Oah, S. Z. (2015). Study on prevention of drowsiness driving using electrocardiography(LF/HF) index. Journal of the Korean Society of Safety, 30(2), 56-62. DOI: 10.14346/JKOSOS.2015.30.2.56
  14. Olson., P., & Rothery, R. (1962). Driver response to amber phase of traffic signals. Highway Research Board, 330, 40-51.
  15. Park, J. S., Kim, G. B., Jo, H. S., Kim, G. R., Kim, H. J., & Min, B. C. (2019). The ability of auditory stimuli to mask siren sounds in a vehicle graphic simulator. Science of Emotion & Sensibility, 22(3), 47-54. DOI: 10.14695/KJSOS.2018.22.3.47
  16. Park, K. J., & Jeong, H. J. (2014). Assessing methods of heart rate variability. Annals of Clinical Neurophysiology, 16(2), 49-54. DOI: 10.14253/kjcn.2014.16.2.49
  17. Patel, M., Lal, S. K. L., Kavanagh, D. & Rossiter, P. (2011). Applying nural network analysis on heart rate variability data to assess driver fatigue. Journal of Expert Systems with Applications, 38(6), 7235-7242. DOI: 10.1016/j.eswa.2010.12.028