DOI QR코드

DOI QR Code

Methodology for Evaluating Big Data Platforms Performance in the Domestic Electronic Power Industry

국내 전력산업에서의 빅데이터 플랫폼 성과 평가 방법론

  • Received : 2020.08.04
  • Accepted : 2020.08.25
  • Published : 2020.08.30

Abstract

As the domestic electric power industry becomes a smart grid, big data platforms for demand management, facility management, and customer service have been deployed. However, due to the nature of the big data project, big data platforms take time to realize their value in the business processes. Therefore, it is not easy to evaluate the performance of the initial big data platforms using the known or theoretical evaluation methods. In this paper, we propose a methodology of big data platform performance evaluation based on specific information quality such as information completeness/sufficiency, information reliability, information relevancy, information comparability, information unbiasedness, timeliness of information, related to the volume, diversity, and velocity of big data.

국내 전력산업이 스마트 그리드화 되면서 이로 인해 발생하는 빅데이터를 활용하여 수요관리, 시설물관리, 대고객서비스 등을 위한 빅데이터 플랫폼들이 도입되고 있는 추세이다. 그러나 빅데이터 프로젝트의 속성상 실제로 빅데이터 플랫폼의 활용이 업무 프로세스 상에서 정착되기 위해서는 많은 시간과 업데이트가 필요하다. 따라서 기존에 알려져 있거나 이론적인 평가 방법으로는 초기 빅데이터 플랫폼의 성과를 평가하기는 적절하지 않다. 본 논문에서는 빅데이터의 규모, 다양성, 속도에 따른 정보의 완전성/충분성, 정보의 신뢰성/정확성, 정보의 적합성/관련성, 정보의 상세성/구체성, 정보의 비교가능성, 정보의 불편성, 정보의 적시성 등 특정 정보의 7 가지 품질 측면에서 전력산업에서 초기 빅데이터 플랫폼의 성과를 평가하는 방법론을 제시한다.

Keywords

References

  1. Accenture (2016) "Optimizing Grid Performance through Advanced Operations".
  2. Wilcox, T., Jin, N., Flach, P., & Thumim, J. (2019). A Big Data platform for smart meter data analytics. Computers in Industry, 105, 250-259. https://doi.org/10.1016/j.compind.2018.12.010
  3. Alahakoon, D., & Yu, X. (2015). Smart electricity meter data intelligence for future energy systems: A survey. IEEE Transactions on Industrial Informatics, 12(1), 425-436. https://doi.org/10.1109/TII.2015.2414355
  4. Zhou, K., Fu, C., & Yang, S. (2016). Big data driven smart energy management: From big data to big insights. Renewable and Sustainable Energy Reviews, 56, 215-225. https://doi.org/10.1016/j.rser.2015.11.050
  5. Ku, T. Y., Park, W. K., & Choi, H. (2018, July). Demand response operation method on energy big data platform. In 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 823-825). IEEE.
  6. Guilan, W., Guoliang, Z., Hongshan, Z., & Hongyang, L. (2016). Real-time big data technologies of energy internet platform. In 2016 IEEE International Conference on Power System Technology (POWERCON) (pp. 1-6). IEEE.
  7. Capgemini (2012) "Smart Analytics for the Utility Sector".
  8. Bhattarai, B. P., Paudyal, S., Luo, Y., Mohanpurkar, M., Cheung, K., Tonkoski, R., ... & Manic, M. (2019). Big data analytics in smart grids: state-of-the-art, challenges, opportunities, and future directions. IET Smart Grid, 2(2), 141-154. https://doi.org/10.1049/iet-stg.2018.0261
  9. IS Group. (2012). Managing big data for smart grids and smart meters. IBM Corporation, whitepaper (May 2012).
  10. Fotopoulou, E., Zafeiropoulos, A., Terroso-Saenz, F., Simsek, U., Gonzalez-Vidal, A., Tsiolis, G., ... & Skarmeta, A. (2017). Providing personalized energy management and awareness services for energy efficiency in smart buildings. Sensors, 17(9), 2054. https://doi.org/10.3390/s17092054
  11. Jiang, R., Lu, R., Wang, Y., Luo, J., Shen, C., & Shen, X. (2014). Energy-theft detection issues for advanced metering infrastructure in smart grid. Tsinghua Science and Technology, 19(2), 105-120. https://doi.org/10.1109/TST.2014.6787363
  12. Ostroff, C., & Schmitt, N. (1993). Configurations of organizational effectiveness and efficiency. Academy of management Journal, 36(6), 1345-1361. https://doi.org/10.2307/256814
  13. IDC (2016) "Big Data: Turning Promise Into Reality".
  14. Tole, A. A. (2013). Big data challenges. Database systems journal, 4(3), 31-40.
  15. Stein, B., & Morrison, A. (2014). The enterprise data lake: Better integration and deeper analytics. PwC Technology Forecast: Rethinking integration, 1(1-9), 18.
  16. Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. Ieee Access, 6, 3585-3593. https://doi.org/10.1109/ACCESS.2018.2793265
  17. Marinakis, V. (2020). Big Data for Energy Management and Energy-Efficient Buildings. Energies, 13(7), 1555. https://doi.org/10.3390/en13071555
  18. Hofmann, E. (2017). Big data and supply chain decisions: the impact of volume, variety and velocity properties on the bullwhip effect. International Journal of Production Research, 55(17), 5108-5126. https://doi.org/10.1080/00207543.2015.1061222
  19. Mittal, A. (2013). Trustworthiness of big data. International Journal of Computer Applications, 80(9).
  20. Mao, R., Xu, H., Wu, W., Li, J., Li, Y., & Lu, M. (2015). Overcoming the challenge of variety: big data abstraction, the next evolution of data management for AAL communication systems. IEEE Communications Magazine, 53(1), 42-47. https://doi.org/10.1109/MCOM.2015.7010514
  21. Al-Salim, A. M., Lawey, A. Q., El-Gorashi, T. E., & Elmirghani, J. M. (2017). Energy efficient big data networks: Impact of volume and variety. IEEE Transactions on Network and Service Management, 15(1), 458-474. https://doi.org/10.1109/tnsm.2017.2787624
  22. Capgemini (2017) "The deciding factor: Big data & decision making," Capgemini Reports, 1-24.
  23. Kadadi, A., Agrawal, R., Nyamful, C., & Atiq, R. (2014, October). Challenges of data integration and interoperability in big data. In 2014 IEEE international conference on big data (big data) (pp. 38-40). IEEE.
  24. DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information systems research, 3(1), 60-95. https://doi.org/10.1287/isre.3.1.60
  25. Li, E. Y. (1997). Perceived importance of information system success factors: A meta analysis of group differences. Information & management, 32(1), 15-28. https://doi.org/10.1016/S0378-7206(97)00005-0
  26. Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748
  27. Aldholay, A., Isaac, O., Abdullah, Z., Abdulsalam, R., & Al-Shibami, A. H. (2018). An extension of Delone and McLean IS success model with self-efficacy. The International Journal of Information and Learning Technology.
  28. Kahn, B. K., Strong, D. M., & Wang, R. Y. (2002). Information quality benchmarks: product and service performance. Communications of the ACM, 45(4), 184-192. https://doi.org/10.1145/505248.506007
  29. Wang, R. Y., & Strong, D. M. (1996) Beyond Accuracy: What Data Quality Means to Data Consumers. Journal of Management Information Systems 12(4), pp 5-33. https://doi.org/10.1080/07421222.1996.11518099
  30. Fanning, K. (2016). Big Data and KPIs: A Valuable Connection. Journal of Corporate Accounting & Finance, 27(3), 17-19. https://doi.org/10.1002/jcaf.22137
  31. McShea, C., Oakley, D., & Mazzei, C. (2016). The reason so many analytics efforts fall short. Harvard Business Review.

Cited by

  1. 빅데이터 품질이 기업의 경영성과에 미치는 영향에 관한 연구 vol.12, pp.8, 2020, https://doi.org/10.15207/jkcs.2021.12.8.245