참고문헌
- Tuutti, K. (1982). Corrosion of Steel in Concrete. Cement-och betonginst.
- Saremi, M., and Mahallati, E. (2002). A Study on Chloride-Induced Depassivation of Mild Steel in Simulated Concrete Pore Solution. Cement and Concrete Research, 32(12), 1915-1921. https://doi.org/10.1016/S0008-8846(02)00895-5
- Soylev, T. A., and Richardson, M. G. (2008). Corrosion Inhibitors for Steel in Concrete: State-of-The-Art Report. Construction and Building Materials, 22(4), 609-622. https://doi.org/10.1016/j.conbuildmat.2006.10.013
- Dhir, R. K., El-Mohr, M. A. K., and Dyer, T. D. (1996). Chloride Binding in GGBS Concrete. Cement and Concrete Research, 26(12), 1767-1773. https://doi.org/10.1016/S0008-8846(96)00180-9
- Raki, L., Beaudoin, J. J., and Mitchell, L. (2004). Layered Double Hydroxide-like Materials: Nanocomposites for Use in Concrete. Cement and Concrete Research, 34(9), 1717-1724. https://doi.org/10.1016/j.cemconres.2004.05.012
- Glasser, F. P., Kindness, A., and Stronach, S. A. (1999). Stability and Solubility Relationships in AFm Phases: Part I. Chloride, Sulfate and Hydroxide. Cement and Concrete Research, 29(6), 861-866. https://doi.org/10.1016/S0008-8846(99)00055-1
- Ishida, T., Miyahara, S., and Maruya, T. (2008). Chloride Binding Capacity of Mortars Made with Various Portland Cements and Mineral Admixtures. Journal of Advanced Concrete Technology, 6(2), 287-301. https://doi.org/10.3151/jact.6.287
- Rives, V., and Ulibarri, M. A. (1999). Layered Double Hydroxides (LDH) Intercalated with Metal Coordination compounds and Oxometalates. Coordination Chemistry Reviews, 181(1), 61-120. https://doi.org/10.1016/S0010-8545(98)00216-1
- Balonis, M., Lothenbach, B., Le Saout, G., and Glasser, F. P. (2010). Impact of Chloride on the Mineralogy of Hydrated Portland Cement Systems. Cement and Concrete Research, 40(7), 1009-1022. https://doi.org/10.1016/j.cemconres.2010.03.002
- Matschei, T., Lothenbach, B., and Glasser, F. P. (2007). The AFm Phase in Portland Cement. Cement and Concrete Research, 37(2), 118-130. https://doi.org/10.1016/j.cemconres.2006.10.010
-
Tabara, K., Miyaguchi, K., Morioka, M., and Takewaka, K. (2011). Hydration Behavior and Fixation Ability of Chloride Ion by a Variety of Kinds of Hardened Cements Added with CaO.
$2Al_2O_3$ , Cement Science and Concrete Technology, 64(1), 428-434. https://doi.org/10.14250/cement.64.428 - Klaus, S. R., Neubauer, J., and Goetz-Neunhoeffer, F. (2013). Hydration Kinetics of CA2 and CA-Investigations Performed on a Synthetic Calcium Aluminate Cement. Cement and Concrete Research, 43, 62-69. https://doi.org/10.1016/j.cemconres.2012.09.005
-
Shinsugi, M., Atarashi, D., Higuchi, T., and Sakai, E. (2017). Hydrated Products in Low Heat Portland Cement - CaO.
$2Al_2O_3$ - Expansive Additive System and the Properties of its Surface Carbonated Samples. Cement Science and Concrete Technology, 70(1), 162-168. https://doi.org/10.14250/cement.70.162 -
Lee, Y., Kim, M., Chen, Z., Lee, H., and Lim, S. (2018). Chloride-binding capacity of Portland cement paste blended with synthesized CA2 (CaO.
$2Al_2O_3$ ). Advances in Materials Science and Engineering, 2018. - Dobelin, N. and Kleeberg, R. (2015). Profex: A Graphical User Interface for The Rietveld Refinement Program BGMN. Journal of Applied Crystallography, 48, 1573-1580. https://doi.org/10.1107/S1600576715014685
- Cements, H. A. (1996). Chemical Binders. Institute of Refractories Engineering, IRE, South Africa, 1-15.
-
Ahn, T. H., Shim, K. B., So, K. H., and Ryou, J. (2014). Influence of Lead and Chromium Ions as Toxic Heavy Metals between AFt and AFm Phases based on
$C_3A$ and$C_4A_3S$ . Journal of Ceramic Processing Research, 15(6), 539-544. https://doi.org/10.36410/JCPR.2014.15.6.539 - Florea, M. V. A., and Brouwers, H. J. H. (2012). Chloride binding Related to Hydration Products: Part I: Ordinary Portland Cement. Cement and Concrete Research, 42(2), 282-290. https://doi.org/10.1016/j.cemconres.2011.09.016
- Balonis, M., Lothenbach, B., Le Saout, G., and Glasser, F. P. (2010). Impact of chloride on the mineralogy of hydrated Portland cement systems. Cement and Concrete Research, 40(7), 1009-1022. https://doi.org/10.1016/j.cemconres.2010.03.002
-
Tabara, K., Yamamoto, K., Ashida, M., and Morioka, M. (2013). Fixation ability of chloride ion by hardened cement added with CaO.
$2Al_2O_3$ . Cement Science and Concrete Technology, 66(1), 491-498. https://doi.org/10.14250/cement.66.491 -
Mesbah, A., François, M., Cau-dit-Coumes, C., Frizon, F., Filinchuk, Y., Leroux, F., and Renaudin, G. (2011). Crystal structure of Kuzel’s salt 3CaO.
$Al_2O_3$ .1/$2CaSO_4$ .1/2CaCl2.$11H_2O$ determined by synchrotron powder diffraction. Cement and Concrete Research, 41(5), 504-509. https://doi.org/10.1016/j.cemconres.2011.01.015 -
Birnin-Yauri, U. A., and Glasser, F. P. (1998). Friedel's salt,
$Ca_2Al$ $(OH)_6$ (Cl, OH).$2H_2O$ : its solid solutions and their role in chloride binding. Cement and Concrete Research, 28(12), 1713-1723. https://doi.org/10.1016/S0008-8846(98)00162-8 - Wang, Y., Shui, Z., Gao, X., Yu, R., Huang, Y., and Cheng, S. (2019). Understanding the chloride binding and diffusion behaviors of marine concrete based on Portland limestone cement-alumina enriched pozzolans. Construction and Building Materials, 198, 207-217. https://doi.org/10.1016/j.conbuildmat.2018.11.270