DOI QR코드

DOI QR Code

CaAl2O4-CaAl4O7 혼입 포틀랜드 시멘트 결합재의 염소이온 고정 특성

Chloride Binding Properties of Portland Cement Binder Incorporating CaAl2O4-CaAl4O7

  • 한재도 (한양대학교 건축시스템공학과) ;
  • 이윤수 (한양대학교 건축시스템공학과) ;
  • 이한승 (한양대학교 ERICA 공학대학 건축학부)
  • 투고 : 2020.01.08
  • 심사 : 2020.03.30
  • 발행 : 2020.08.30

초록

본 연구는 철근콘크리트 구조물의 염해 내구성 향상의 일환으로써, 보통 포틀랜드 시멘트에 실험체별 다른 비율의 칼슘 알루미네이트 시멘트와 합성 CA2를 혼입하여 혼입 비율에 따른 염소이온 고정능력을 평가하였다. 침지 후 실험체의 물리·화학적 특성을 압축강도, 공극 구조, 수화물 분석으로 염소이온침투깊이를 EPMA를 통하여 고찰하였다. 클링커 조성에 CA가 34%미만일 경우 실험체의 조밀성이나 강도 발현 양상이 구조재료로서 사용 제한이 없을 것이라고 판단되었으며 CAC와 CA2를 5:5비율로 혼입하여 실험체에 치환한 실험체가 CAC 혹은 CA2만 치환한 실험체보다 염소이온 침투억제능력 과 AFm상 및 프리델 염 생성이 높은 것으로 확인할 수 있었다. 결과적으로, 시멘트 페이스트 대비 칼슘 알루미네이트 클링커 치환율이 증가함에 따라 일반적으로 염소이온 고정능력이 향상하였고, CA-CA2비율에 따라 염소이온 고정 능력 및 염소이온 침투억제 능력에 차이가 있음을 확인할 수 있었다. 실험 범위 내에서 CA-CA2비율이 39:60이며 시멘트 페이스트 대비 10% 치환한 실험체인 M 10 가 가장 우수한 것으로 나타났다.

This study conducted to understand effects of CA (CaAl2O4) and CA2 (CaAl4O7) ratio on chloride binding ability and compressive strength and pore structure of cement mortar incorporating mixture of CA and CA2. The Portland cement based specimens were mixed with the clinkers CA and CA2, and these calcium aluminate clinker mixture were replaced 0, 5, 10% by weight of cement. After all the test specimens were cured for 28 days under water curing, they were immersed in the distilled water and NaCl solution. As a result, 28 days compressive strength of all specimens was similar, and As the replacement ratio of calcium aluminate clinker in the specimen increased, Friedel's salt production tended to increase. However, it was dependent on the amount of Al2O3 in the level of 5% replacement and CA ratio in the level of 10% replacement. Through equilibrium isotherm result, it was also indicated that as replacement ratio of calcium aluminate clinker in cement matrix increased, chloride binding capacity was improved, and chloride penetration was suppressed. In this study, the specimen replaced with 10% of the calcium aluminate clinker mixture (CA 39%, CA2 60%) was remarkable to control chloride attack. We figured out necessity to understand optimal CA/CA2 ratio to effectively apply CA2 as a sustainable building material by improving the chloride binding ability in Portland cement based system.

키워드

참고문헌

  1. Tuutti, K. (1982). Corrosion of Steel in Concrete. Cement-och betonginst.
  2. Saremi, M., and Mahallati, E. (2002). A Study on Chloride-Induced Depassivation of Mild Steel in Simulated Concrete Pore Solution. Cement and Concrete Research, 32(12), 1915-1921. https://doi.org/10.1016/S0008-8846(02)00895-5
  3. Soylev, T. A., and Richardson, M. G. (2008). Corrosion Inhibitors for Steel in Concrete: State-of-The-Art Report. Construction and Building Materials, 22(4), 609-622. https://doi.org/10.1016/j.conbuildmat.2006.10.013
  4. Dhir, R. K., El-Mohr, M. A. K., and Dyer, T. D. (1996). Chloride Binding in GGBS Concrete. Cement and Concrete Research, 26(12), 1767-1773. https://doi.org/10.1016/S0008-8846(96)00180-9
  5. Raki, L., Beaudoin, J. J., and Mitchell, L. (2004). Layered Double Hydroxide-like Materials: Nanocomposites for Use in Concrete. Cement and Concrete Research, 34(9), 1717-1724. https://doi.org/10.1016/j.cemconres.2004.05.012
  6. Glasser, F. P., Kindness, A., and Stronach, S. A. (1999). Stability and Solubility Relationships in AFm Phases: Part I. Chloride, Sulfate and Hydroxide. Cement and Concrete Research, 29(6), 861-866. https://doi.org/10.1016/S0008-8846(99)00055-1
  7. Ishida, T., Miyahara, S., and Maruya, T. (2008). Chloride Binding Capacity of Mortars Made with Various Portland Cements and Mineral Admixtures. Journal of Advanced Concrete Technology, 6(2), 287-301. https://doi.org/10.3151/jact.6.287
  8. Rives, V., and Ulibarri, M. A. (1999). Layered Double Hydroxides (LDH) Intercalated with Metal Coordination compounds and Oxometalates. Coordination Chemistry Reviews, 181(1), 61-120. https://doi.org/10.1016/S0010-8545(98)00216-1
  9. Balonis, M., Lothenbach, B., Le Saout, G., and Glasser, F. P. (2010). Impact of Chloride on the Mineralogy of Hydrated Portland Cement Systems. Cement and Concrete Research, 40(7), 1009-1022. https://doi.org/10.1016/j.cemconres.2010.03.002
  10. Matschei, T., Lothenbach, B., and Glasser, F. P. (2007). The AFm Phase in Portland Cement. Cement and Concrete Research, 37(2), 118-130. https://doi.org/10.1016/j.cemconres.2006.10.010
  11. Tabara, K., Miyaguchi, K., Morioka, M., and Takewaka, K. (2011). Hydration Behavior and Fixation Ability of Chloride Ion by a Variety of Kinds of Hardened Cements Added with CaO.$2Al_2O_3$, Cement Science and Concrete Technology, 64(1), 428-434. https://doi.org/10.14250/cement.64.428
  12. Klaus, S. R., Neubauer, J., and Goetz-Neunhoeffer, F. (2013). Hydration Kinetics of CA2 and CA-Investigations Performed on a Synthetic Calcium Aluminate Cement. Cement and Concrete Research, 43, 62-69. https://doi.org/10.1016/j.cemconres.2012.09.005
  13. Shinsugi, M., Atarashi, D., Higuchi, T., and Sakai, E. (2017). Hydrated Products in Low Heat Portland Cement - CaO.$2Al_2O_3$- Expansive Additive System and the Properties of its Surface Carbonated Samples. Cement Science and Concrete Technology, 70(1), 162-168. https://doi.org/10.14250/cement.70.162
  14. Lee, Y., Kim, M., Chen, Z., Lee, H., and Lim, S. (2018). Chloride-binding capacity of Portland cement paste blended with synthesized CA2 (CaO.$2Al_2O_3$). Advances in Materials Science and Engineering, 2018.
  15. Dobelin, N. and Kleeberg, R. (2015). Profex: A Graphical User Interface for The Rietveld Refinement Program BGMN. Journal of Applied Crystallography, 48, 1573-1580. https://doi.org/10.1107/S1600576715014685
  16. Cements, H. A. (1996). Chemical Binders. Institute of Refractories Engineering, IRE, South Africa, 1-15.
  17. Ahn, T. H., Shim, K. B., So, K. H., and Ryou, J. (2014). Influence of Lead and Chromium Ions as Toxic Heavy Metals between AFt and AFm Phases based on $C_3A$ and $C_4A_3S$. Journal of Ceramic Processing Research, 15(6), 539-544. https://doi.org/10.36410/JCPR.2014.15.6.539
  18. Florea, M. V. A., and Brouwers, H. J. H. (2012). Chloride binding Related to Hydration Products: Part I: Ordinary Portland Cement. Cement and Concrete Research, 42(2), 282-290. https://doi.org/10.1016/j.cemconres.2011.09.016
  19. Balonis, M., Lothenbach, B., Le Saout, G., and Glasser, F. P. (2010). Impact of chloride on the mineralogy of hydrated Portland cement systems. Cement and Concrete Research, 40(7), 1009-1022. https://doi.org/10.1016/j.cemconres.2010.03.002
  20. Tabara, K., Yamamoto, K., Ashida, M., and Morioka, M. (2013). Fixation ability of chloride ion by hardened cement added with CaO.$2Al_2O_3$. Cement Science and Concrete Technology, 66(1), 491-498. https://doi.org/10.14250/cement.66.491
  21. Mesbah, A., François, M., Cau-dit-Coumes, C., Frizon, F., Filinchuk, Y., Leroux, F., and Renaudin, G. (2011). Crystal structure of Kuzel’s salt 3CaO.$Al_2O_3$.1/$2CaSO_4$.1/2CaCl2.$11H_2O$ determined by synchrotron powder diffraction. Cement and Concrete Research, 41(5), 504-509. https://doi.org/10.1016/j.cemconres.2011.01.015
  22. Birnin-Yauri, U. A., and Glasser, F. P. (1998). Friedel's salt, $Ca_2Al$ $(OH)_6$ (Cl, OH).$2H_2O$: its solid solutions and their role in chloride binding. Cement and Concrete Research, 28(12), 1713-1723. https://doi.org/10.1016/S0008-8846(98)00162-8
  23. Wang, Y., Shui, Z., Gao, X., Yu, R., Huang, Y., and Cheng, S. (2019). Understanding the chloride binding and diffusion behaviors of marine concrete based on Portland limestone cement-alumina enriched pozzolans. Construction and Building Materials, 198, 207-217. https://doi.org/10.1016/j.conbuildmat.2018.11.270