DOI QR코드

DOI QR Code

초고속주행 하이퍼루프 포드의 정밀 위치측정 장치 구현 및 성능평가

Implementation and Performance Evaluation of a Precision Localizing Device for Hyperloop Pods Driving at Ulta-High Speeds

  • Ok, Min-Hwan (Dept. of HTX research team, Korea Railroad Research Institute) ;
  • Choi, Su-Yong (Dept. of HTX research team, Korea Railroad Research Institute) ;
  • Choe, Jae-Heon (Dept. of HTX research team, Korea Railroad Research Institute) ;
  • Lee, Kwan-Sup (Dept. of HTX research team, Korea Railroad Research Institute)
  • 투고 : 2020.10.03
  • 심사 : 2020.10.22
  • 발행 : 2020.10.30

초록

하이퍼루프는 튜브 내를 부상한 상태로 초고속주행하는 미래형 이동 시스템으로 제안되었다. 하이퍼루프에서 달리는 포드 차량은 선형 동기모터 상에서 주행하기에 위치측정이 근본적 중요성을 가진다. 1000km/h 이상의 속도로 주행하는 포드 차량의 가속과 감속에 정밀한 위치측정이 요구되며 또한 차량간 거리 유지를 위한 속도 조절에도 요구된다. 본 논문은 laser surface velocimeter를 개량하여 새로운 범위조건의 위치측정을 시도한다. 높은 정밀도로 초고속 이동체의 위치를 측정해야 하기에 지나가는 타일의 레이저 반사율 차이 검출로 변위를 계산하는 상대위치 측정장치를 구현하여 성능시험으로 평가하였다. 500km/h 미만의 포드 속도에서 cm 단위의 정밀도로 정확한 위치 측정을 보였으며, 500km/h 이상의 포드 속도에서도 0.1% 미만의 매우 낮은 오차율로 위치측정 결과를 보여주었다. 향후 500km/h 이상에서의 오차율도 0에 수렴하도록 연구를 진행해야 한다.

A futuristic locomotion system called Hyperloop is projected for driving at ulta-high speed, levitated in the tube. In hyperloop localization of pods on the linear synchronous motor is essential for pod driving. precision localization is required for acceleration and deceleration of pods driving at speed above 1,000km/h, and also required for adjusting the pod speed driving at this very-high speed to maintain inter-vehicle distance. In this work, a new scale of localization is challenged by modified laser surface velocimeter. In acceleration the speed of a virtual pod is calculated along its displacement measured by laser reflection. Under the requirement of precise localization of the pod driving at ultra-high speed, a displacement measurement device, which detects the difference in reflections from tiles passing by the pod, is developed and evaluated through performance test. Tests of pod speeds below 500km/h have showed exact localization results of the precision in centimeters, and tests of pod speeds above 500km/h have showed localization with very low error rates under 0.1%. For the measurement above 500km/h, future works would pursue the error rate converges to zero.

키워드

참고문헌

  1. "Hyperloop Alpha", Elon Musk, whitepaper , Tesla Inc., August 2013.
  2. "Laser surface velocimeter", , Wikipedia.
  3. B. Xue, H. Zhang, T. Zhao, H. Jing, "A Traceable High-Accuracy Velocity Measurement by Electro-Optic Dual-Comb Interferometry", Appl. Sci., Vol. 19, No. 9, pp. 4118-4124, 2019.
  4. A. E. Brennemann, Holic, R. L., "Magnetic and optical fluorescence position sensing for planar linear motor", Proc. of Int. Conf. on Intelligent Robots and Systems, Vol. 3, pp. 101-107, 1995.
  5. S. H. Lee, K. S. Jung, "Precision displacement measurement using astigmatism", J. of Korean Society Precision Engineering, Vol. 25, No. 7, pp. 87-94, 2008.
  6. KEYENCE Corp. Application Note, .
  7. B. hnilicka, A. Besancon-voda, H. J. Schroder, G. Filardi, "Modeling the focus error characteristic of a DVD player", Proc. of the 2002 Int. Conf. on Control Application, Vol. 2, pp. 629-630, 2002.
  8. M.-H. Ok et al., High-Speed Relative Position Measurement Method by Scanning and Detecting with Multiple Light Sources, KR Patent: 10-2019-0161376, 2019.
  9. M.-H. Ok et al., High-Speed Relative Position Measuring Method by Scanning and Detecting with Multiple Light Sources, Capable of Detecting Bitwise Information, KR Patent: 10-2019-0161377, 2019.
  10. Y.-h. Lee, H. -w. Ju, and S. -h. Song, "Development of Camera Controller with Pointer Tracking Unit", J. of Korea Inst. Information, Electronics, and Communication Technology, vol. 1, no. 3, pp. 111-117, Dec, 2008.
  11. A.-h. Lee, C. -U. Baek, and D. -H. Lee, J.-W. Jung, "Underwater Laser Communication Using LDPC Coded Method", J. of Korea Inst. of Information, Electronics, and Communication Technology, vol. 11, no. 3, pp. 246-252, Jun, 2018. https://doi.org/10.17661/JKIIECT.2018.11.3.246