참고문헌
- Abbas, I.A. and Youssef, H.M. (2009), "Finite element analysis of two-temperature generalized magneto-thermoelasticity", Arch. Appl. Mech., 79(10), 917-925. https://doi.org/10.1007/s00419-008-0259-9.
- Abbas, I.A. and Youssef, H.M. (2012), "A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method", Int. J. Thermophys., 33(7), 1302-1313. https://doi.org/10.1007/s10765-012-1272-3.
- Abd-Allaa, A. and Mahmoud, S.R. (2011), "Magneto-thermo-viscoelastic Interactions in an unbounded non-homogeneous body with a spherical cavity subjected to a periodic loading", Appl. Math. Sci., 5(29), 1431-1447.
- Allam, M., Tantawy, R. and Zenkour, A. (2018), "Magneto-thermo-elastic response of exponentially graded piezoelectric hollow spheres", Adv. Comput. Des., 3(4), 303-318. https://doi.org/10.12989/acd.2018.3.3.303.
- Atwa, S.Y. (2014), "Generalized magneto-thermoelasticity with two temperature and initial stress under Green-Naghdi theory", Appl. Math. Model., 38(21-22), 5217-5230. https://doi.org/10.1016/j.apm.2014.04.023.
- Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B, 33(35), 1950439. https://doi.org/10.1142/s0217984919504396.
- Bouderba, B., Ahmed, H.M. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085.
- Chauthale, S. and Khobragade, N.W. (2017), "Thermoelastic response of a thick circular plate due to heat generation and its thermal stresses", Glob. J. Pure Appl. Math., 13(10), 7505-7527.
- Dhaliwal, R.S. and Sherief, H.H. (1980), "Generalized thermoelasticity for anisotropic media", Quart. Appl. Math., 38(1), 1-8. https://doi.org/10.1090/qam/575828.
- Ezzat, M.A. and El-Bary, A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., 25(2), 177-186. http://dx.doi.org/10.12989/scs.2017.25.2.177.
- Ezzat, M.A., Karamany, A.S. and El-Bary, A. (2017), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., 19(5), 539-551. http://dx.doi.org/10.12989/sss.2017.19.5.539.
- Farhan, A.M., Abd-Alla, A.M. and Khder, M.A. (2019), "Solution of a problem of thermal stresses in a non-homogeneous thermoelastic infinite medium of isotropic material by finite difference method", J. Ocean Eng. Sci., 4(3), 256-262. https://doi.org/10.1016/j.joes.2019.05.001.
- Hassan, M., Marin, M., Ellahi, R. and Alamri, S. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transf. Res., 49(18), 1837-1848. http://dx.doi.org/10.1615/HeatTransRes.2018025569.
- Honig, G.H. (1984), "A method for the inversion of Laplace Transform", J. Comput. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
- Kaur, I. and Lata, P. (2019a), "Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with two temperature and fractional order heat transfer", SN Appl. Sci., 1, 900. https://doi.org/10.1007/s42452-019-0942-1.
- Kaur, I. and Lata, P. (2019b), "Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source", Int. J. Mech. Mater. Eng., 14(10), 1-13. https://doi.org/10.1186/s40712-019-0107-4.
- Kumar, R. and Ailawalia, P. (2010), "Time harmonic inclined load in micropolar thermoelastic medium possesing cubic symmetrywith one relaxation time", Tamkang J. Sci. Eng., 13(2), 117-126.
- Kumar, R., Kumar, A. and Singh, D. (2015), "Thermomechanical interactions due to laser pulse in microstretch thermoelastic medium", Arch. Appl. Mech., 67(6), 439-456.
- Kumar, R., Sharma, N. and Lata, P. (2016a), "Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091.
- Kumar, R., Sharma, N. and Lata, P. (2016b), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40(13-14), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061.
- Kumar, R., Sharma, N. and Lata, P. (2016c), "Thermomechanical interactions due to hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
- Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
- Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. http://dx.doi.org/10.12989/scs.2018.27.4.439
- Lata, P. and Kaur, I. (2019a), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. http://dx.doi.org/10.12989/sem.2019.70.2.245.
- Lata, P. and Kaur, I. (2019b), "Transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation in generalized thermoelasticity due to inclined load", SN Appl. Sci., 1, 426. https://doi.org/10.1007/s42452-019-0438-z.
- Lata, P. and Kaur, I. (2019c), "Axisymmetric thermomechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources", Coupl. Syst. Mech., 8(5), 415-437. https://doi.org/10.12989/csm.2019.8.5.415.
- Lata, P., Kumar, R. and Sharma, N. (2016a), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. http://dx.doi.org/10.12989/scs.2016.22.3.567.
- Mahmoud, S. (2012), "Influence of rotation and generalized magneto-thermoelastic on Rayleigh waves in a granular medium under effect of initial stress and gravity field", Meccanica, 47, 1561-1579. https://doi.org/10.1007/s11012-011-9535-9.
- Marin, M. (1994), "The lagrange identity method in thermoelasticity of bodies with microstructure. Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5.
- Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.
- Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
- Marin, M., Agarwal, R. and Mahmoud, S. (2013), "Nonsimple material problems addressed by the Lagrange's identity", Bound. Value Prob., 2013(135), 1-14. https://doi.org/10.1186/1687-2770-2013-135.
- Marin, M., Craciun, E. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Appl., 25(1-2), 175-196.
- Marin, M., Ellahi, R. and Chirila, A. (2017a), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
- Marin, M., Vlase, S. and Bhatti, M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863.
- Mohamed, R.A., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlin. Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
- Othman, M.I. and Marin, M. (2017), "The effect of heat laser pulse on generalized thermoelasticity for micropolar medium", Mech. Mech. Eng., 797-811.
- Othman, M.I., Khan, A., Jahangir, R. and Jahangir, A. (2019), "Analysis on plane waves through magneto-thermoelastic microstretch rotating medium with temperature dependent elastic properties", Appl. Math. Model., 65, 535-548. https://doi.org/10.1016/j.apm.2018.08.032.
- Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708
- Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22, 107-117.
- Slaughter, W. (2002), The Linearised Theory of Elasticity, Birkhausar.
- Zenkour, A.M. and Abouelregal, A.E. (2018), "Decaying temperature and dynamic response of a thermoelastic nanobeam to a moving load", Adv. Comput. Des., 3(1), 1-16. https://doi.org/10.12989/acd.2018.3.1.001.