DOI QR코드

DOI QR Code

Inactivation of Foodborne Pathogens by Lactic Acid Bacteria

  • Daliri, Frank (Department of Plant Health (Virology), Council for Scientific and Industrial Research-Crops Research Institute) ;
  • Aboagye, Agnes Achiaa (Biotechnology Division, Council for Scientific and Industrial Research-Crops Research Institute) ;
  • Daliri, Eric Banan-Mwine (Department of Food Science and Biotechnology, Kangwon National University)
  • Received : 2020.09.22
  • Accepted : 2020.10.05
  • Published : 2020.10.30

Abstract

The problems caused by foodborne pathogens are not only a concern to the food industry but also with regard to global public health. Over the years, fermentation technology has proved to be one of the cheapest and safest methods for inactivating and controlling pathogenic microorganisms in food. Scientific evidence shows that lactic acid bacteria fermentation exerts significant antimicrobial effect against pathogenic bacteria and viruses. Lactic acid bacteria metabolites such as organic acids, bacteriocins and hydrogen peroxides have adverse effects on foodborne pathogens which lead to their inhibition. These compounds do not only cause physical injuries, but also have significant effects on the pathogens' gene expression. Furthermore, the presence of lactic acid bacteria in food provides nutritional competition among foodborne pathogens, and all these factors together suppress their growth. This study reviews our current knowledge of the antimicrobial abilities of lactic acid bacteria, their molecular mechanisms, and their application for inactivating foodborne pathogens.

식품 매개 병원균에 의한 문제는 식품산업뿐 아니라 세계 공공 보건에서도 문제가 된다. 최근 몇 년 간, 발효기술은 식품 내 병원성 미생물의 불활성화 및 이를 조절하기 위한 값 싸고 안전한 방법이라는 것이 밝혀졌다. 유산균 발효는 병원성 세균 및 바이러스에 대해 유의적인 항균효과를 갖는 과학적 증거를 보였다. 유기산, 박테리오신 및 과산화수소와 같은 유산균 대사체는 식품 매개 병원균에 대해 악영향을 미치고 이는 이들의 저해작용으로 이어진다. 이 화합물들은 물리적 결함만을 야기하는 것이 아니라 병원균의 유전자 발현에 대해서도 유의적인 저해 효과를 나타낸다. 게다가, 식품 내 유산균의 존재는 병원균에 대해 영양적인 경쟁을 제공하며 모든 요인이 그 성장을 억제한다. 본 연구는 유산균의 항균력, 분자생물학적 메커니즘 및 식품 매개 병원균의 불활성화를 위한 응용에 대하여 우리의 현 지식을 검토한다.

Keywords

References

  1. Lorusso, A., Calistri, P., Petrini, A., Savini, G., Decaro, N., Novel coronavirus (SARS-CoV-2) epidemic: a veterinary perspective. Vet. Ital., 56, 5-10 (2020).
  2. Linnan, M.J., Mascola, L., Lou, X.D., Goulet, V., May, S., Salminen, C., Hird, D.W., Yonekura, M.L., Hayes, P., Weaver, R., Epidemic listeriosis associated with Mexicanstyle cheese. N. Engl. J. Med., 319, 823-828 (1988). https://doi.org/10.1056/NEJM198809293191303
  3. Iijima, Y., Tanaka, S., Ohishi, H., Multiple outbreaks of gastroenteritis due to a single strain of genotype GII/4 norovirus in Kobe, Japan, 2006: risk factors for norovirus spread in health care settings. Jpn. J. Infect. Dis., 61, 419-422 (2008).
  4. Oh, J.H., Park, M.K., Recent trends in Salmonella outbreaks and emerging technology for biocontrol of Salmonella using phages in foods: a review. J. Microbiol. Biotechnol., 27, 2075-2088 (2017). https://doi.org/10.4014/jmb.1710.10049
  5. Frank, C., Werber, D., Cramer, J.P., Askar, M., Faber, M., Heiden, M., Bernard, H., Fruth, A., Prager, R., Spode, A., Epidemic profile of Shiga-toxin-producing Escherichia coli O104: H4 outbreak in Germany. N. Engl. J. Med., 365, 1771-1780 (2011). https://doi.org/10.1056/NEJMoa1106483
  6. Wang, P., Song, X., Characteristics of food poisoning in mainland China, 2006-2015. Pract. Prev. Med., 25, 257-260 (2018).
  7. Liu, L., Wang, J., Levin, M.J., Sinnott-Armstrong, N., Zhao, H., Zhao, Y., Shao, J., Di, N., Zhang, T.E., The origins of specialized pottery and diverse alcohol fermentation techniques in Early Neolithic China. PNAS, 116, 12767-12774 (2019). https://doi.org/10.1073/pnas.1902668116
  8. Liu, L., Li, Y., Hou, J., Making beer with malted cereals and qu starter in the Neolithic Yangshao culture, China. J. Archaeol. Sci. Rep., 29, 102134 (2020).
  9. Varela, C., Sundstrom, J., Cuijvers, K., Jiranek, V., Borneman, A., Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii. Scientific. rep., 10, 1-13 (2020). https://doi.org/10.1038/s41598-019-56847-4
  10. Daliri, E.B.M., Ofosu, F.K., Chelliah, R., Kim, J.H., Kim, J.R., Yoo, D., Oh, D.H., Untargeted metabolomics of fermented rice using UHPLC Q-TOF MS/MS reveals an abundance of potential antihypertensive compounds. Foods, 9, 1007 (2020). https://doi.org/10.3390/foods9081007
  11. Hati, S., Patel, N., Sakure, A., Mandal, S., Influence of whey protein concentrate on the production of antibacterial peptides derived from fermented milk by lactic acid bacteria. Int. J. Pept. Res. Ther., 24, 87-98 (2018). https://doi.org/10.1007/s10989-017-9596-2
  12. Ammouri, K., Rekik, S., 2019. Isolement et purification de bacteries lactiques productrices de bacteriocines a partir de produits laitiers. Universite Mouloud Mammeri de Tizi-Ouzou. Tizi Ouzou, Algerie, pp. 2-11.
  13. Cuesta, V.M., 2018. Optimització de la produccio de bacteriocines amb activitat antimicrobiana en cultius de Pantoea spp. Universitat Autonoma de Barcelona. Barcelona, Spain, pp. 5-11.
  14. Chung, H.J., Yousef, A.E., Screening of Lactobacilli derived from fermented foods and partial characterization of Lactobacillus casei OSY-LB6A for its antibacterial activity against foodborne pathogens. J. Food Sci. Nutr., 14, 162-167 (2009).
  15. Ennahar, S., Deschamps, N., Anti-Listeria effect of enterocin A, produced by cheese-isolated Enterococcus faecium EFM01, relative to other bacteriocins from lactic acid bacteria. J. Appl. Microbiol. 88, 449-457 (2000). https://doi.org/10.1046/j.1365-2672.2000.00985.x
  16. Gao, Z., Daliri, E.B.M., Wang, J., Liu, D., Chen, S., Ye, X., Ding, T., Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J. Food Prot., 82, 441-453 (2019). https://doi.org/10.4315/0362-028X.JFP-18-303
  17. Sidooski, T., Brandelli, A., Bertoli, S.L., Souza, C.K.D., Carvalho, L.F.D., Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria-A review. Crit. Rev. Food Sci. 59, 2839-2849 (2019). https://doi.org/10.1080/10408398.2018.1474852
  18. Shanker, E., Federle, M.J., Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes, 8, 15 (2017). https://doi.org/10.3390/genes8010015
  19. Palmai, M., Kisko, G., Studies on the growth of Listeria monocytogenes and Lactobacillus casei in mixed cultures. Acta Aliment., 32, 103-111 (2003). https://doi.org/10.1556/AAlim.32.2003.1.12
  20. Siedler, S., Balti, R., Neves, A.R., Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr. Opin. Biotechnol. 56, 138-146 (2019). https://doi.org/10.1016/j.copbio.2018.11.015
  21. Liao, X., Ma, Y., Daliri, E.B.M., Koseki, S., Wei, S., Liu, D., Ye, X., Chen, S., Ding, T., Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens. Trends Food Sci. Technol., 95, 97-106 (2020). https://doi.org/10.1016/j.tifs.2019.11.006
  22. Miranda, R.O., Campos-Galvao, M.E.M., Nero, L.A., Expression of genes associated with stress conditions by Listeria monocytogenes in interaction with nisin producer Lactococcus lactis. Food Res. Int., 105, 897-904 (2018). https://doi.org/10.1016/j.foodres.2017.12.030
  23. Breukink, E., de Kruijff, B., Lipid II as a target for antibiotics. Nat. Rev. Drug Discov., 5, 321-323 (2006). https://doi.org/10.1038/nrd2004
  24. Melo, T.A., dos Santos, T.F., de Almeida, M.E., Junior, L.A.G.F., Andrade, E.F., Rezende, R.P., Marques, L.M., Romano, C.C., Inhibition of Staphylococcus aureus biofilm by Lactobacillus isolated from fine cocoa. BMC Microbiol. 16, 250 (2016). https://doi.org/10.1186/s12866-016-0871-8
  25. Adetoye, A., Pinloche, E., Adeniyi, B.A., Ayeni, F.A., Characterization and anti-salmonella activities of lactic acid bacteria isolated from cattle faeces. BMC Microbiol. 18, 96 (2018). https://doi.org/10.1186/s12866-018-1248-y
  26. Alakomi, H.L., Skyttä, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K., Helander, I., Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 66, 2001-2005 (2000). https://doi.org/10.1128/AEM.66.5.2001-2005.2000
  27. Saraiva, C., Garcia-Diez, J., Fontes, M., Esteves, A., Modeling the behavior of Listeria monocytogenes. In: Meat, Listeria monocytogenes, Monde Alfred Nyila, IntechOpen (2018). DOI: 10.5772/intechopen.79967
  28. Miladi, H., Bakhrouf, A., Ammar, E., Cellular lipid fatty acid profiles of reference and food isolates Listeria monocytogenes as a response to refrigeration and freezing stress. J. Food Biochem., 37, 136-143 (2013). https://doi.org/10.1111/j.1745-4514.2011.00607.x
  29. Supa-Amornkul, S., Chantratita, W., Srichunrusami, C., Janchompoo, P., Chaturongakul, S., Listeria monocytogenes MerR-like regulator NmlRlm: Its transcriptome and role in stress response. Foodborne Pathog. Dis., 13, 369-378 (2016). https://doi.org/10.1089/fpd.2015.2101
  30. Bayles, D., Wilkinson, B., Osmoprotectants and cryoprotectants for Listeria monocytogenes. Lett. Appl. Microbiol., 30, 23-27 (2000). https://doi.org/10.1046/j.1472-765x.2000.00646.x
  31. Wiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O.P., Bierbaum, G., de Kruijff, B., Sahl, H.G., Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem., 276, 1772-1779 (2001). https://doi.org/10.1074/jbc.M006770200
  32. Scatassa, M.L., Gaglio, R., Cardamone, C., Macaluso, G., Arcuri, L., Todaro, M., Mancuso, I., Anti-Listeria activity of lactic acid bacteria in two traditional Sicilian cheeses. Ital. J. Food Saf., 6, 6191 (2017).
  33. Ercoli, L., Gallina, S., Nia, Y., Auvray, F., Primavilla, S., Guidi, F., Pierucci, B., Graziotti, C., Decastelli, L., Scuota, S., Investigation of a staphylococcal food poisoning outbreak from a Chantilly cream dessert, in Umbria (Italy). Foodborne Pathog. Dis. 14, 407-413 (2017). https://doi.org/10.1089/fpd.2016.2267
  34. Di Domenico, M., Curini, V., Di Lollo, V., Massimini, M., Di Gialleonardo, L., Franco, A., Caprioli, A., Battisti, A., Camma, C., Genetic diversity of Coxiella burnetii in domestic ruminants in central Italy. BMC Vet. Res., 14, 1-7 (2018). https://doi.org/10.1186/s12917-017-1323-x
  35. Kao, C.T., Frazier, W., Effect of lactic acid bacteria on growth of Staphylococcus aureus. Appl. Microbiol., 14, 251-255 (1966). https://doi.org/10.1128/AEM.14.2.251-255.1966
  36. Haines, W.C., Harmon, L., Effect of selected lactic acid bacteria on growth of Staphylococcus aureus and production of enterotoxin. Appl. Microbiol., 25, 436-441 (1973). https://doi.org/10.1128/AEM.25.3.436-441.1973
  37. Pena, R.T., Blasco, L., Ambroa, A., Gonzalez-Pedrajo, B., Fernandez-Garcia, L., Lopez, M., Bleriot, I., Bou, G., Garcia-Contreras, R., Wood, T.K., Tomas, M., Relationship between quorum sensing and secretion systems. Front. Microbiol., 10, 1100 (2019). https://doi.org/10.3389/fmicb.2019.01100
  38. Yan, S., Wu, G., Can biofilm be reversed through quorum sensing in Pseudomonas aeruginosa?. Front. Microbiol., 10, 1582 (2019). https://doi.org/10.3389/fmicb.2019.01582
  39. Hor, Y.Y., Liong, M.T., Use of extracellular extracts of lactic acid bacteria and bifidobacteria for the inhibition of dermatological pathogen Staphylococcus aureus. Dermatol. Sin., 32, 141-147 (2014). https://doi.org/10.1016/j.dsi.2014.03.001
  40. Guessas, B., Hadadji, M., Saidi, N., Kihal, M., Inhibition of Staphylococcus aureus growth by lactic acid bacteria in milk. Dirasat Agric. Sci., 32, 304-313 (2005).
  41. Bhola, J., Bhadekar, R., In vitro synergistic activity of lactic acid bacteria against multi-drug resistant staphylococci. BMC Complement Altern. Med., 19, 70 (2019). https://doi.org/10.1186/s12906-019-2470-3
  42. Vesterlund, S., Karp, M., Salminen, S., Ouwehand, A.C., Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology, 152, 1819-1826 (2006). https://doi.org/10.1099/mic.0.28522-0
  43. Gomez, N.C., Ramiro, J.M.P., Quecan, B.X.V., de Melo Franco, B.D.G., Use of potential probiotic lactic acid bacteria biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 biofilms formation. Front. Microbiol., 7, 863 (2016).
  44. Mulaw, G., Muleta, D., Tesfaye, A., Sisay, T., Protective effect of potential probiotic strains from fermented Ethiopian food against Salmonella Typhimurium DT104 in Mice. Int. J. Microbiol., 2020, 7523629 (2020).
  45. Kim, M.S., Yoon, Y.S., Seo, J.G., Lee, H.G., Chung, M.J., Yum, D.Y., A study on the prevention of salmonella infection by using the aggregation characteristics of lactic acid bacteria. Toxicol. Res. 29, 129-135 (2013). https://doi.org/10.5487/TR.2013.29.2.129
  46. Pelyuntha, W., Chaiyasut, C., Kantachote, D., Sirilun, S., Cell-free supernatants from cultures of lactic acid bacteria isolated from fermented grape as biocontrol against Salmonella Typhi and Salmonella Typhimurium virulence via autoinducer- 2 and biofilm interference. Peer J., 7, e7555 (2019). https://doi.org/10.7717/peerj.7555
  47. Petrova, M.I., Imholz, N.C., Verhoeven, T.L., Balzarini, J., Van Damme, E.J., Schols, D., Vanderleyden, J., Lebeer, S., Lectin-like molecules of Lactobacillus rhamnosus GG inhibit pathogenic Escherichia coli and Salmonella biofilm formation. PloS one 11, e0161337 (2016). https://doi.org/10.1371/journal.pone.0161337
  48. Amrutha, B., Sundar, K., Shetty, P.H., Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables. Microb. Pathog., 111, 156-162 (2017). https://doi.org/10.1016/j.micpath.2017.08.042
  49. El Hussein, A.A., Mohy-Eldin, H.S., Elmadiena, M.M.N., El Siddig, M.A., Prevalence, detection and antimicrobial resistance pattern of salmonella in Sudan, Salmonella In: Distribution, adaptation, control measures and molecular technologies, Bassam A. Annous and Joshua B. Gurtler, IntechOpen, (2012). DOI: 10.5772/29928.
  50. Coban, H.B., Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst. Eng., 43, 569-591 (2020). https://doi.org/10.1007/s00449-019-02256-w
  51. Karmali, M.A., Infection by verocytotoxin-producing Escherichia coli. Clin. Microbiol. Rev., 2, 15-38 (1989). https://doi.org/10.1128/CMR.2.1.15
  52. Wells, J., Davis, B., Wachsmuth, I., Riley, L., Remis, R., Sokolow, R., Morris, G., Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J. Clin. Microbiol., 18, 512-520 (1983). https://doi.org/10.1128/JCM.18.3.512-520.1983
  53. Zhao, T., Doyle, M.P., Shere, J., Garber, L., Prevalence of enterohemorrhagic Escherichia coli O157: H7 in a survey of dairy herds. Appl. Environ. Microbiol., 61, 1290-1293 (1995). https://doi.org/10.1128/AEM.61.4.1290-1293.1995
  54. Boyce, T.G., Swerdlow, D.L., Griffin, P.M., Escherichia coli O157: H7 and the hemolytic-uremic syndrome. N. Engl. J. Med., 333, 364-368 (1995). https://doi.org/10.1056/NEJM199508103330608
  55. Wachsmuth, I., Sparling, P., Barrett, T., Potter, M., Enterohemorrhagic Escherichia coli in the United States. FEMS Immunol. Med. Microbiol. 18, 233-239 (1997). https://doi.org/10.1111/j.1574-695X.1997.tb01051.x
  56. Gould, L.H., Walsh, K.A., Vieira, A.R., Herman, K., Williams, I.T., Hall, A.J., Cole, D., Surveillance for foodborne disease outbreaks-United States, 1998-2008. Morbidity and Mortality Weekly Report: Surveillance Summaries 62, 1-34 (2013).
  57. Ren, H., Saliu, E.M., Zentek, J., Goodarzi Boroojeni, F., Vahjen, W., Screening of host specific lactic acid bacteria active against Escherichia coli from massive sample pools with a combination of in vitro and ex vivo methods. Front. Microbiol., 10: 2705. (2019). https://doi.org/10.3389/fmicb.2019.02705
  58. Du, J., Xu, M., Li, B., Ding, X., Huo, G., Preliminary screening of lactic acid bacteria against Escherichia coli and the research of probiotic potential for the screening bacteria. Sci. Technol. Food Ind., 37, 152-156 (2016).
  59. Wang, F., Zhang, J.L., Ning, X.B., Antibacterial effect of compound Lactobacillus on E. coli O157: H7. Sci. Technol. Food Ind., 21, 34:83-86 (2013). https://doi.org/10.3969/j.issn.1002-0306.2000.05.013
  60. Orihuel, A., Terán, L., Renaut, J., Vignolo, G.M., De Almeida, A.M., Saavedra, M.L., Fadda, S., Differential proteomic analysis of lactic acid bacteria-Escherichia coli O157:H7 Interaction and its contribution to bioprotection strategies in meat. Front. Microbiol., 9, 1083-1083 (2018). https://doi.org/10.3389/fmicb.2018.01083
  61. Orihuel, A., Terán, L., Renaut, J., Planchon, S., Valacco, M.P., Masias, E., Minahk, C., Vignolo, G., Moreno, S., De Almeida, A.M., Saavedra, L., Fadda, S., Physiological and proteomic response of Escherichia coli O157:H7 to a bioprotective lactic acid bacterium in a meat environment. Food Res. Int. (Ottawa, Ont.), 125, 108622 (2019). https://doi.org/10.1016/j.foodres.2019.108622
  62. Martin, V., Maldonado, A., Fernandez, L., Rodriguez, J.M., Connor, R.I., Inhibition of human immunodeficiency virus type 1 by lactic acid bacteria from human breastmilk. Breastfeed Med., 5, 153-158 (2010). https://doi.org/10.1089/bfm.2010.0001
  63. Wachsman, M.B., Castilla, V., de Ruiz Holgado, A.P., de Torres, R.A., Sesma, F., Coto, C.E., Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antivir. Res., 58, 17-24 (2003). https://doi.org/10.1016/S0166-3542(02)00099-2
  64. Aboubakr, H.A., El-Banna, A.A., Youssef, M.M., Al-Sohaimy, S.A.A., Goyal, S.M., Antiviral effects of Lactococcus lactis on Feline Calicivirus, A Human Norovirus Surrogate. Food Environ. Virol., 6, 282-289 (2014). https://doi.org/10.1007/s12560-014-9164-2
  65. Sirichokchatchawan, W., Temeeyasen, G., Nilubol, D., Prapasarakul, N., Protective effects of cell-free supernatant and live lactic acid bacteria isolated from thai pigs against a pandemic strain of Porcine Epidemic Diarrhea Virus. Probiotics Antimicro., 10, 383-390 (2018). https://doi.org/10.1007/s12602-017-9281-y
  66. Biliavska, L., Pankivska, Y., Povnitsa, O., Zagorodnya, S., Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus against Human Adenovirus Type 5. Medicina (Kaunas, Lithuania), 55, 519 (2019). https://doi.org/10.3390/medicina55090519
  67. Takeda, S., Takeshita, M., Kikuchi, Y., Dashnyam, B., Kawahara, S., Yoshida, H., Watanabe, W., Muguruma, M., Kurokawa, M., Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. Int. Immunopharmacol., 11, 1976-1983 (2011). https://doi.org/10.1016/j.intimp.2011.08.007
  68. Kawashima, T., Hayashi, K., Kosaka, A., Kawashima, M., Igarashi, T., Tsutsui, H., Tsuji, N.M., Nishimura, I., Hayashi, T., Obata, A., Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses. Int. Immunopharmacol., 11, 2017-2024 (2011). https://doi.org/10.1016/j.intimp.2011.08.013
  69. Kechaou, N., Chain, F., Gratadoux, J.J., Blugeon, S., Bertho, N., Chevalier, C., Le Goffic, R., Courau, S., Molimard, P., Chatel, J.M., Langella, P., Bermudez-Humaran, L.G., Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening. Appl. Environ. Microbiol., 79, 1491-1499 (2013). https://doi.org/10.1128/AEM.03075-12
  70. Jay, J.M., Do background microorganisms play a role in the safety of fresh foods? Trends Food Sci. Technol., 8, 421-424 (1997). https://doi.org/10.1016/S0924-2244(97)01093-5
  71. Olaoye, O.A., Onilude, A.A., Investigation on the potential application of biological agents in the extension of shelf life of fresh beef in Nigeria. World J. Microbiol. Biotechnol., 26, 1445-1454 (2010). https://doi.org/10.1007/s11274-010-0319-5
  72. Senne, M., Gilliland, S., Antagonistic action of cells of Lactobacillus delbrueckii subsp. lactis against pathogenic and spoilage microorganisms in fresh meat systems. J. Food Prot., 66, 418-425 (2003). https://doi.org/10.4315/0362-028X-66.3.418
  73. Ni, P., Huang, J., Ji, W., Qi, K., Fu, R., Isolation, identification of a Lactococcus lactis strain exhibiting broadspectrum antibacterial activity and its effects on preservation of chilled pork. Food Ferment. Ind., 39, 53-57 (2013).
  74. Maragkoudakis, P.A., Mountzouris, K.C., Psyrras, D., Cremonese, S., Fischer, J., Cantor, M.D., Tsakalidou, E., Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int. J. Food Microbiol., 130, 219-226 (2009). https://doi.org/10.1016/j.ijfoodmicro.2009.01.027
  75. Slima, S.B., Ktari, N., Trabelsi, I., Triki, M., Feki-Tounsi, M., Moussa, H., Makni, I., Herrero, A., Jiménez-Colmenero, F., Perez, C.R.C., Effect of partial replacement of nitrite with a novel probiotic Lactobacillus plantarum TN8 on color, physico-chemical, texture and microbiological properties of beef sausages. LWT-Food Sci Technol., 86, 219-226 (2017). https://doi.org/10.1016/j.lwt.2017.07.058
  76. Cavicchioli, V.Q., Camargo, A.C., Todorov, S.D., Nero, L.A., Novel bacteriocinogenic Enterococcus hirae and Pediococcus pentosaceus strains with antilisterial activity isolated from Brazilian artisanal cheese. J. Dairy Sci., 100, 2526-2535 (2017). https://doi.org/10.3168/jds.2016-12049
  77. Tharrington, G., Sorrells, K.M., Inhibition of Listeria monocytogenes by milk culture filtrates from Lactobacillus delbrueckii subsp. lactis. J. Food Prot., 55, 542-544 (1992). https://doi.org/10.4315/0362-028X-55.7.542
  78. Altuntas, E.G., Ayhan, K., Peker, S., Ayhan, B., Demiralp, D.O., Purification and mass spectrometry based characterization of a pediocin produced by Pediococcus acidilactici 13. Mol. Biol. Rep., 41, 6879-6885 (2014). https://doi.org/10.1007/s11033-014-3573-z
  79. Cavicchioli, V.Q., dos Santos Dornellas, W., Perin, L.M., Pieri, F.A., de Melo Franco, B.D.G., Todorov, S.D., Nero, L.A., Genetic diversity and some aspects of antimicrobial activity of lactic acid bacteria isolated from goat milk. Appl. Biochem. Biotechnol., 175, 2806-2822 (2015). https://doi.org/10.1007/s12010-015-1511-8
  80. Zhang, P., Gu, G., Zhang, J., Chen, J., Inhibition of Listeria monocytogenes growth by using combined bacteriocin producing strains in raw beef. Sci. Technol. Food Ind., 32, 118-110 (2011).
  81. Zhu, C., Gao, Y., Guo-Dong, X., Screening of lactic acid bacteria for production of anti-Listeria bacteriocin. Modern Food Sci. Technol., 30, 86-91 (2014).
  82. Schaack, M.M., Marth, E.H., Behavior of Listeria monocytogenes in skim milk and in yogurt mix during fermentation by thermophilic lactic acid bacteria. J. Food Prot., 51, 607-614 (1988). https://doi.org/10.4315/0362-028X-51.8.607
  83. Yang, Y., Latorre, J., Khatri, B., Kwon, Y., Kong, B., Teague, K., Graham, L., Wolfenden, A., Mahaffey, B., Baxter, M., Characterization and evaluation of lactic acid bacteria candidates for intestinal epithelial permeability and Salmonella Typhimurium colonization in neonatal turkey poults. Poult. Sci., 97, 515-521 (2018). https://doi.org/10.3382/ps/pex311
  84. Rokana, N., Mallappa, R.H., Batish, V.K., Grover, S., Interaction between putative probiotic Lactobacillus strains of Indian gut origin and Salmonella: impact on intestinal barrier function. LWT-Food Sci Technol., 84, 851-860(2017) https://doi.org/10.1016/j.lwt.2016.08.021
  85. De Keersmaecker, S.C., Verhoeven, T.L., Desair, J., Marchal, K., Vanderleyden, J., Nagy, I., Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella Typhimurium is due to accumulation of lactic acid. FEMS Microbiol. Lett., 259, 89-96 (2006). https://doi.org/10.1111/j.1574-6968.2006.00250.x
  86. Zhang, H., Qian, G., Bin, L., Nursing, D., Study of Lactobacillus strains with antagonistic activity against Salmonella. Food Res. Dev., 37, 171-174 (2016).
  87. Brashears, M.M., Reilly, S.S., Gilliland, S.E., Antagonistic action of cells of Lactobacillus lactis toward Escherichia coli O157:H7 on refrigerated raw chicken meat. J. Food Prot., 61, 166-170 (1998). https://doi.org/10.4315/0362-028X-61.2.166
  88. Tshabalala, P., de Kock, H., Buys, E., Survival of Escherichia coli O157: H7 co-cultured with different levels of Pseudomonas fluorescens and Lactobacillus plantarum on fresh beef. Braz. J. Microbiol., 43, 1406-1413 (2012). https://doi.org/10.1590/S1517-83822012000400023
  89. Zhang, Y., Zhang, L., Du, M., Yi, H., Guo, C., Tuo, Y., Han, X., Li, J., Zhang, L., Yang, L., Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food. Microbiol. Res., 167, 27-31 (2011). https://doi.org/10.1016/j.micres.2011.02.006
  90. Sharma, C., Singh, B.P., Thakur, N., Gulati, S., Gupta, S., Mishra, S.K., Panwar, H., Antibacterial effects of Lactobacillus isolates of curd and human milk origin against foodborne and human pathogens. 3 Biotech., 7, 31 (2017).
  91. Diepers, A.C., Krömker, V., Zinke, C., Wente, N., Pan, L., Paulsen, K., Paduch, J.H., In vitro ability of lactic acid bacteria to inhibit mastitis-causing pathogens. Sustain Chem. Pharm., 5, 84-92 (2017). https://doi.org/10.1016/j.scp.2016.06.002
  92. Yu, Y., Zhang, Y., Liu, R., Zeng, D., Huang, W., Jiang, H., Studies on the antagonistic property of Lactobacillus. Southwest China Journal of Agric. Sci., 19, 294-296 (2006). https://doi.org/10.3969/j.issn.1001-4829.2006.02.030