DOI QR코드

DOI QR Code

플라즈마 표면처리가 TiO2/TiO2-x 저항 변화형 메모리에 미치는 영향

Effect of Plasma Treatment on TiO2/TiO2-x Resistance Random Access Memory

  • Kim, Han-Sang (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
  • 투고 : 2020.08.27
  • 심사 : 2020.10.16
  • 발행 : 2020.11.01

초록

In this study, a TiO2/TiO2-x-based resistance variable memory was fabricated using a DC/RF magnetron sputtering system and ALD. In order to analyze the effect of oxygen plasma treatment on the performance of resistance random access memory (ReRAM), the TiO2/TiO2-x-based ReRAM was evaluated by applying RF power to the TiO2-x oxygen-holding layer at 30, 60, 90, 120, and 150 W, respectively. The ReRAM was fabricated, and the electrical and surface area performances were compared and analyzed. In the case of ReRAM without oxygen plasma treatment, the I-V curve had a hysteresis curve shape, but the width was very small, with a relatively high surface roughness of the oxygen-retaining layer. However, in the case of oxygen plasma treatment, the HRS/LRS ratio for the I-V curve improved as the applied RF power increased; stable improvement was also noted in the surface roughness of the oxygen-retaining layer. It was confirmed that the low voltage drive was not smooth due to charge trapping in the oxygen diffusion barrier layer owing to the high intensity ReRAM applied with an RF power of approximately 150 W.

키워드

참고문헌

  1. S. J. Song, J. Y. Seok, J. H. Yoon, K. M. Kim, G. H. Kim, M. H. Lee, and C. S. Hwang, Sci. Rep., 3, 3443 (2013). [DOI: https://doi.org/10.1038/srep03443]
  2. M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, IEEE Electron Device Lett., 32, 1579 (2011). [DOI: https://doi.org/10.1109/LED.2011.2163697]
  3. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, Adv. Mater., 24, 1844 (2012). [DOI: https://doi.org/10.1002/adma.201104104]
  4. J. W. Choi, Y. S. Mo, and H. J. Song, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 658 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.10.658]
  5. J. H. Kim, K. H. Nam, and H. B. Chung, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 81 (2014). [DOI: https://doi.org/10.4313/JKEM.2014.27.2.81]
  6. N. Singh, M. Seshadri, M. S. Pathak, and V. Singh, Solid State Sci., 87 (2019). [DOI: https://doi.org/10.1016/j.solidstatesciences.2018.09.003]
  7. K. Ahmad, P. Kumar, and S. M. Mobin, Nanoscale Adv., 2, 502 (2020). [DOI: https://doi.org/10.1039/C9NA00573K]
  8. A. Sahoo, P. Padhan, and W. Prellier, ACS Appl. Mater. Interfaces, 9, 36423 (2017). [DOI: https://doi.org/10.1021/acsami.7b11930]
  9. S. Mansouri, S. Jandl, A. Mukhin, V. Y. Ivanov, and A. Balbashov, Sci. Rep., 7, 13796 (2017). [DOI: https://doi.org/10.1038/s41598-017-12714-8]
  10. R. U. Chandrasena, W. Yang, Q. Lei, M. U. Delgado-Jaime, K. D. Wijesekara, M. Golalikhani, B. A. Davidson, E. Arenholz, K. Kobayashi, M. Kobata, F.M.F. de Groot, U. Aschauer, N. A. Spaldin, X. Xi, and A. X. Gray, Nano Lett., 17, 794 (2017). [DOI: https://doi.org/10.1021/acs.nanolett.6b03986]
  11. T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterluti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, Adv. Energy Mater., 9, 1802995 (2019). [DOI: https://doi.org/10.1002/aenm.201802995]
  12. J. Low, B. Dai, T. Tong, C. Jiang, and J. Yu, Adv. Mater., 31, 1802981 (2018). [DOI: https://doi.org/10.1002/adma.201802981]
  13. C. Gao, T. Wei, Y. Zhang, X. Song, Y. Huan, H. Liu, M. Zhao, J. Yu, and X. Chen, Adv. Mater., 31, 1806596 (2019). [DOI: https://doi.org/10.1002/adma.201806596]
  14. X. Zhou, W. Guo, J. Fu, Y. Zhu, Y. Huang, and P. Peng, Appl. Surf. Sci., 494, 684 (2019). [DOI: https://doi.org/10.1016/j.apsusc.2019.07.159]
  15. A. Meng, L. Zhang, B. Cheng, and J. Yu, Adv. Mater., 31, 1807660 (2019). [DOI: https://doi.org/10.1002/adma.201807660]
  16. J. Singh, S. A. Khan, J. Shah, R. K. Kotnala, and S. Mohapatra, Appl. Surf. Sci., 422, 953 (2017). [DOI: https://doi.org/10.1016/j.apsusc.2017.06.068]
  17. A. Kogo, Y. Sanehira, Y. Numata, M. Ikegami, and T. Miyasaka, ACS Appl. Mater. Interfaces, 10, 2224 (2018). [DOI: https://doi.org/10.1021/acsami.7b16662]
  18. L. Huttenhofer, F. Eckmann, A. Lauri, J. Cambiasso, E. Pensa, Y. Li, E. Cortes, I. D. Sharp, and S. A. Maier, ACS Nano, 14, 2456 (2020). [DOI: https://doi.org/10.1021/acsnano.9b09987]
  19. Y. Yang, L. C. Yin, Y. Gong, P. Niu, J. Q. Wang, L. Gu, X. Chen, G. Liu, L. Wang, and H. M. Cheng, Adv. Mater., 30, 1704479 (2018). [DOI: https://doi.org/10.1002/adma.201704479]
  20. J. Nam, J. H. Kim, C. S. Kim, J. D. Kwon, and S. Jo, ACS Appl. Mater. Interfaces, 12, 126648 (2020). [DOI: https://doi.org/10.1021/acsami.9b18660]
  21. H. He, D. Huang, W. Pang, D. Sun, Q. Wang, Y. Tang, X. Ji, Z. Guo, and H. Wang, Adv. Mater., 30, 1801013 (2018). [DOI: https://doi.org/10.1002/adma.201801013]
  22. L. Zhang, Z. Chen, J. J. Yang, B. Wysocki, N. McDonald, and Y. Chen, Appl. Phys. Lett., 102, 153503 (2013). [DOI: https://doi.org/10.1063/1.4802206]
  23. L. Michalas, S. Stathopoulos, A. Khiat, and T. Prodromakis, Appl. Phys. Lett., 113, 143503 (2018). [DOI: https://doi.org/10.1063/1.5040936]
  24. Y. Beilliard, F. Paquette, F. Brousseau, S. Ecoffey, F. Alibart, and D. Drouin, AIP Adv., 10, 025305 (2020). [DOI: https://doi.org/10.1063/1.5140994]
  25. A. Mazady and M. Anwar, IEEE Trans. Electron Devices, 61, 1054 (2014). [DOI: https://doi.org/10.1109/TED.2014.2304436]
  26. P. F. Cai, J. B. You, X. W. Zhang, J. J. Dong, X. L. Yang, Z. G . Yin, a nd N . F . Chen, J. Appl. Phys., 105, 083713 (2009). [DOI: https://doi.org/10.1063/1.3108543]
  27. Y. C. Hong, C. U. Bang, D. H. Shin, and H. S. Uhm, Chem. Phys. Lett., 413, 454 (2005). [DOI: https://doi.org/10.1016/j.cplett.2005.08.027]
  28. D. Sakellaropoulos, P. Bousoulas, and D. Tsoukalas, J. Appl. Phys., 126, 044501 (2019). [DOI: https://doi.org/10.1063/1.5094242]
  29. H. Nili, A. F. Vincent, M. Prezesio, M. R. Mahmoodi, I. Kataeva, and D. B. Strukov, IEEE Trans. Nanotechnol., 19, 344 (2020). [DOI: https://doi.org/10.1109/TNANO.2020.2982128]