DOI QR코드

DOI QR Code

RF 마그네트론 스퍼터링법으로 제조한 GZO 박막의 Ar 유량에 따른 특성

Properties of ZnO:Ga Thin Films Deposited by RF Magnetron Sputtering with Ar Gas Flows

  • Kim, Deok Kyu (Department of Electrical Engineering, Wonkwang University)
  • 투고 : 2020.09.21
  • 심사 : 2020.10.13
  • 발행 : 2020.11.01

초록

In this study, ZnO:Ga thin films were fabricated on a glass substrate using various Ar flows by an RF magnetron sputter system at room temperature. The dependencies of Ar flow on different properties were investigated. An appropriate control over the Ar flow led to the formation of a high-quality thin film. The ZnO:Ga films were formed as a hexagonal wurtzite structure with high (002) preferential orientation. The films exhibited a typical columnar microstructure and a smooth top face. The average transmittance was 85~89% within the visible area. By decreasing the Ar flow, the sheet resistance was decreased due to an increase in the grain size and a decrease in the root mean square roughness. The lowest sheet resistance of 86 Ω/□ was obtained at room temperature for the 40 sccm Ar flow.

키워드

참고문헌

  1. W. Li, L. T ang , J. D u, F . Xue, Z. Luo, a nd S . Liu, Sol. Energy Mater. Sol. Cells, 200, 109942 (2019). [DOI: https://doi.org/10.1016/j.solmat.2019.109942]
  2. A. J. Mughal, S. Oh, A. Myzaferi, S. Nakamura, J. S. Speck, and S. P. DenBaars, Electron. Lett., 52, 304 (2016). [DOI: https://doi.org/10.1049/el.2015.3982]
  3. R. H. Hrong, Y. Y. Zeng, W. K. Wang, C. L. Tsai, Y. K. Fu, and W. H. Kuo, Opics Express, 25, 32206 (2017). [DOI: https://doi.org/10.1364/OE.25.032206]
  4. Q. Nian, D. Look, K. Leedy, and G. J. Cheng, Appl. Phys. A, 124, 633 (2018). [DOI: https://doi.org/10.1007/s00339-018-2032-4]
  5. Y. Hou. Z. Mei, A. Tang, H. Liang, and X. Du, Phys. Status Solidi A, 215, 1800037 (2018). [DOI: https://doi.org/10.1002/pssa.201800037]
  6. J. Hu and R. G. Gordon, J. Appl. Phhys., 72, 5381 (1992). [DOI: https://doi.org/10.1063/1.351977]
  7. J. J. Berry, D. S. Ginley, and P. E. Burrows, Appl. Phys. Lett., 92, 193304 (2008). [DOI: https://doi.org/10.1063/1.2917565]
  8. H. Makino and H. Shimizu, Appl. Surf. Sci., 439, 839 (2018). [DOI: https://doi.org/10.1016/j.apsusc.2018.01.107]
  9. H. W. Shin and J. Y. Son, J. Electron. Mater., 47, 4610 (2018). [DOI: https://doi.org/10.1007/s11664-018-6326-2]
  10. M. Nasr, R. Viter, C. Eid, R. Habchi, P. Miele, and M. Bechelany, Surf. Coat. Technol., 343, 24 (2018). [DOI: https://doi.org/10.1016/j.surfcoat.2017.11.060]
  11. L. H . Wong and Y. S . Lai, Appl. Phys. A, 124, 462 (2018). [DOI: https://doi.org/10.1007/s00339-018-1883-z]
  12. M. Mickan, U. Helmersson, and D. Horwat, Surf. Coat. Technol., 347, 245 (2018). [DOI: https://doi.org/10.1016/j.surfcoat.2018.04.089]
  13. J. H. Kim and I. H. Yer, Ceram. Int., 42, 3304 (2016). [DOI: https://doi.org/10.1016/j.ceramint.2015.10.122]
  14. D. Song, A. G. Aberle, and J. Xia, Appl. Surf. Sci., 195, 291 (2002). [DOI: https://doi.org/10.1016/S0169-4332(02)00611-6]
  15. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Reading, MA, 1978) p. 102.
  16. H. Mahdhi, S. Alaya, J. L. Gauffier, K. Djessas, and Z. B. Ayadi, J. Alloys Compd., 695, 697 (2017). [DOI: https://doi.org/10.1016/j.jallcom.2016.11.117]
  17. F. Chaabouni, B. Khalfallah, and M. Abaab, Thin Solid Films, 617, 95 (2016). [DOI: https://doi.org/10.1016/j.tsf.2015.12.047]
  18. Y. Igasaki and H. Saito, Thin Solid Films, 199, 223 (1991). [DOI: https://doi.org/10.1016/0040-6090(91)90004-H]
  19. D. P. Pham, H. T. Nguyen, B. T. Phan, V. D. Hoang, S. Maenosono, and C. V. Tran, Thin Solid Films, 583, 201 (2015). [DOI: https://doi.org/10.1016/j.tsf.2015.03.068]
  20. D. Kim, Ceram. Int., 40, 1457 (2014). [DOI: https://doi.org/10.1016/j.ceramint.2013.07.029]
  21. G. Haacke, J. Appl. Phys., 47, 4086 (1976). [DOI: https://doi.org/10.1063/1.323240]