Acknowledgement
이 연구는 2020년도 국토교통과학기술진흥원 도시건축연구사업의 지원에 의한 결과의 일부임. 과제번호: 20AUDP-C127876-04
References
- Geisser S.(1993). Predictive Inference: An Introduction. Chapman and Hall.
- GIR (2019). National Greenhouse Gas Inventory Report of Korea, Seoul, Greenhouse Gas Inventory & Research Center of Korea, 37-41, 137-142, 375-376.
- EU (2019). The POTEnCIA Central Scenario: An EU energy outlook to 2050, Publication Office of the European Union, http://ec.europa.eu/jrc/en/potencia.
- Hwang, I. (2015). Seoul energy demand forecast 2015-2035: An application of the MEAD, Journal of Environmental Policy and Administration, 23(3), 47-76. https://doi.org/10.15301/jepa.2015.23.3.47
- IEA (2017a). Energy Technology Perspectives 2017, France, IEA Publications, http://www.iea.org/etp2017.
- IEA (2017b). Annal Energy Outlook 2017, IEA Publications.
- IPCC (1996). Revised 1996 IPCC guidelines for national greenhouse gas inventories, International Panel on Climate Change, United Nations Environment Programme, International Energy Agency, Japan.
- IPCC (2006). 2006 IPCC guidelines for national greenhouse gas inventories, International Panel on Climate Change, Institute for global environmental strategies, Japan
- Jeong, Y., & Kim, T. (2019). Estimation and feature of greenhouse gas emission in building sector by national energy statistic, Journal of the Architectural Institute of Korea, 35(7), 187-195
- Ji, C., Choi. M., Gwon, O., Jung, H., & Shin, S. (2020). Greenhouse gas emission from building sector based on national building energy database, Journal of the Architectural Institute of Korea, 36(4), 143-152.
- Korean Government (2014). The report of the roadmap for Green house gas reduction target from Korea, the related ministries of Korean governments, Republic of Korea
- Korean Government (2018). The report of Amendment for the basic roadmap to achieve the national greenhouse gas reduction targets in 2030, the related ministries of Korean governments, Republic of Korea
- Kuhn, M., & Johnson, K. (2018). Applied Predictive Modeling, NewYork, Springer, 24-27.
- Lewis, C. (1982). Industrial and Buisenss Forecasting Methods, Butterworth, Witt&Witt, 86-87
- Lim, S. (2018). A comparative study on the accuracy of tourism forecasting models, Journal of the Korean Data and Information Science Society, 29(6), 1629-1641. https://doi.org/10.7465/jkdi.2018.29.6.1629
- Park, N., Yoo, J., Jo, M., Yun, S., & Jeon, E. (2012). Comparative analysis of scenarios for reduction GHG emissions in Korea by 2050 using the low carbon path calculator, Journal of Korean Society for Atmospheric Environment, 28(5), 556-570. https://doi.org/10.5572/KOSAE.2012.28.5.556
- Song, K., & Lee, C. (2006). A comparison of accuracy among tourism forecasting models, International Journal of Tourism and Hospitality Research, 20(2), 351-369.
- United Nations (2015). United Nations Framework Convention on Climate Change-Adoption of the paris agreement, UNFCCC, FCCC/CP/2015/L.9/Rev.1.
- United National Environment Programme (2018). 2018 Global Status Report, UNEP, IEA