DOI QR코드

DOI QR Code

PEMFC의 고분자막에서 지지체가 고분자전해질 막 성능 및 전기화학적 내구성에 미치는 영향

Effect of Support on the Performance and Electrochemical Durability of Membrane in PEMFC

  • Oh, Sohyung (Department of Chemical Engineering, Sunchon National University) ;
  • Lim, Dae Hyun (Department of Chemical Engineering, Sunchon National University) ;
  • Lee, Daewoong (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • 투고 : 2020.03.04
  • 심사 : 2020.05.30
  • 발행 : 2020.11.01

초록

고분자전해질 연료전지의 기계적 내구성을 높이기 위해 고분자막에 지지체를 넣은 강화막이 사용되고 있다. 지지체는 주로 e-PTFE를 사용하는데 소수성이고 이온전달이 안되므로 성능저하의 원인이 될 수 있다. 그래서 본 연구에서는 e-PTFE 지지체가 PEMFC 성능과 전기화학적 내구성 미치는 영향에 대해 연구하였다. 본연구에서는 지지체가 들어간 강화막과 들어가지 않은 단일막(비강화막)을 비교하였는데, 지지체의 소수성 때문에 강화막의 물 확산계수가 단일막보다 낮았다. 강화막은 물확산 계수가 낮아 이온의 막 이동 저항이 단일막보다 높았다. 지지체의 낮은 수소투과도 때문에 강화막의 OCV가 단일막보다 높았다. 지지체가 수소투과도를 감소시킴으로서 라디칼 발생속도를 감소시켜 강화막의 전기화학적 내구성도 향상시킴을 보였다.

To increase the mechanical durability of the proton exchange membrane fuel cells, a reinforced membrane in which a support is placed in the polymer membrane is used. The support mainly uses e-PTFE, which is hydrophobic and does not transfer ions, which may cause performance degradation. In this study, we investigated the effect of e-PTFE support on PEMFC performance and electrochemical durability. In this study, the reinforced membrane with the support was compared with the single membrane (non-reinforced membrane). Due to the hydrophobicity of the support, the water diffusion coefficient of the reinforced membrane was lower than that of the single membrane. The reinforced membrane had a lower water diffusion coefficient, resulting in higher HFR, which is the membrane migration resistance of ions, than that of a single membrane. Due to the low hydrogen permeability of the support, the OCV of the reinforced membrane was higher than that of the single membrane. The support was shown to reduce the hydrogen permeability, thereby reducing the rate of radical generation, thereby improving the electrochemical durability of the reinforced membrane.

키워드

참고문헌

  1. Wang, G., Yu, Y., Liu, H., Gong, C., Wen, S., Wang, X., Tu, Z., "Progress on Design and Development of Polymer Electrolyte Membrane Fuel Cell Systems for Vehicle Applications: A Review," Fuel Processing Technology, 179, 203-228(2018). https://doi.org/10.1016/j.fuproc.2018.06.013
  2. Department of Energy, https://wwwenergygov/(2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedogojp/english/indexhtml(2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org(2016).
  5. Ministry of Science and Technology of the People's Republic of China, http://wwwmostgovcn/eng(2016).
  6. Gore Enterprise Holdings, Inc, "Ion Conducting Membrane Having High Hardness And Dimensional Stability," PCT/US2002/027338.
  7. Lai, Y. H., Mittelsteadt, C. K., Gittleman, C. S., Dillard, D. A., "Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling," J. Fuel Cell Sci. Technol., 6(2), 021002, https://doi.org/10.1115/1.2971045(2009).
  8. Spernjak, D., Mukherjee, P. P., Mukundan, R., Davey, J., Hussey, D. S., Jcobson, D. and Borup, R. L., "Measurement of Water Content in Polymer Electrolyte Membranes Using High Resolution Neutron Imaging," ECS Trans., 33(1), 1451-1456(2010).
  9. MacKinnon, S. M., Fuller, Coms, F. D., Schoeneweiss, M. R., Gittleman, C. S., Lai, Y., Jiang, H. R., Brenner, A. M., "Fuel Cells-Proton Exchange Membrane Fuel Cells Membranes: Design and Characterization," Encyclopedia of Electrochemical Power Sources, Elsvier, Amsterdam, 2009, 741-754.
  10. Craig, S., Gittleman, C. S., Coms, F. D., and Lai, Y. H., "Polymer Electrolyte Fuel Cell Degradation-Chapter 2 - Membrane Durability: Physical and Chemical Degradation," Academic Press, Boston, 2012, Pages 15-88.
  11. Crum, M. and Liu, W., "Effective Testing Matrix for Studying Membrane Durability in PEM Fuel Cells: Part 2. Mechanical Durability and Combined Mechanical and Chemical Durability," ECS Trans. 3(1), 541-550(2006). https://doi.org/10.1149/1.2356175
  12. Tang, Y., Kusoglu, A., Karlsson, A. M., Santare, M. H., William, S. C., and Johnson, B., "Mechanical Properties of a Reinforced Composite Polymer Electrolyte Membrane and Its Simulated Performance in PEM Fuel Cells," Journal of Power Sources, 175(2), 817-825(2008). https://doi.org/10.1016/j.jpowsour.2007.09.093
  13. Khattra, N. S., Lu, Z., Karlsson, A. M., Santare, M. H., Busby, F. C., and Schmiedel, T., "Time-dependent Mechanical Response of a Composite PFSA Membrane," Journal of Power Sources, 228, 256-269 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.116
  14. Kusoglu, A., Santare, M. H., Karlsson, A. M., Cleghorn, S. and Johnson, W. B., "Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells," Journal of The Electrochemical Society, 157(5), B705-B713(2010). https://doi.org/10.1149/1.3328496
  15. Kusoglu, A., Karlsson, A. M., Santare, M. H., Cleghorn, S. and Johnson, W. B., "Mechanical Behavior of Fuel Cell Membranes Under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses," Journal of Power Sources, 170(2), 345-358 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.063
  16. Lee, H. R., Lee, S. H., Hwang, B. C., Na, I. C. and Park, K. P., "Characteristics of Proton Exchange Membrane Fuel Cells(PEMFC) Membrane and Electrode Assembly(MEA) Using Sulfonated Poly(ether ether ketone) Membran," Korean Chem. Eng. Res., 54(2), 181-186(2016). https://doi.org/10.9713/kcer.2016.54.2.181
  17. Marchi, C. S. and Somerday, B. P., "Technical Reference for Hydrogen Compatibility of Materials," SANDIA REPORT, Sandia National Lab., SAND2012-7321, Printed September 2012.
  18. Schalenbach, M., Hoefner, T., Paciok, P., Carmo, M., Lueke, W. and Stolten, D., "Gas Permeation through Nafion. Part 1: Measurements," J. Phys. Chem. C., 119, 25145-25155(2015). https://doi.org/10.1021/acs.jpcc.5b04155
  19. Kocha, S. S., Yang, J. D., and Yi, J. S., "Characterization of Gas Crossover and Its Implications in PEM Fuel Cells," AIChE Journal, 52(5), 1916-1925(2006). https://doi.org/10.1002/aic.10780
  20. Hwang, B. C., Oh, S. H., Lee, M. S., Lee, D. H. and Park, K. P., "Decrease in Hydrogen Crossover through Membrane of Polymer Electrolyte Membrane Fuel Cells at the Initial Stages of an Acceleration Stress Test," Korean J. Chem. Eng., 35(11), 2290-2295(2018). https://doi.org/10.1007/s11814-018-0142-5