DOI QR코드

DOI QR Code

Future Prospects for Industrial Application of Abscisic acid, a Stress-resistant Phytohormone

스트레스 내성 식물 호르몬인 앱시스산의 산업적 활용 전망

  • Lee, Jeongho (Department of Biotechnology, Sangmyung University) ;
  • Kim, Seunghee (Department of Biotechnology, Sangmyung University) ;
  • Yoo, Hah Young (Department of Biotechnology, Sangmyung University)
  • 이정호 (상명대학교 생명공학과) ;
  • 김승희 (상명대학교 생명공학과) ;
  • 유하영 (상명대학교 생명공학과)
  • Received : 2020.05.05
  • Accepted : 2020.05.30
  • Published : 2020.11.01

Abstract

Plants are exposed to various types of stresses in their surroundings, and stress-resistant and regulatory proteins are produced as defense mechanisms. Abscisic acid is well known for its important role in stress signals as a phytohormone and is also involved in the physiological reactions of plants such as leaf senescence and seed dormancy. In particular, it has been found to perform a variety of functions in other biological systems, such as animals and microalgae, not plants. In this review, the biosynthesis and signaling process of abscisic acid and its function were investigated and the future prospects for the industrial application of abscisic acid in various biotechnologies, including agriculture, biomedical and industrial biotechnology, have been proposed based on study of emerging applications such as increased crop yields, disease treatment development and bioenergy production.

이동성이 없는 식물은 주위 환경에서 다양한 형태의 스트레스를 받게 되는데 이를 대응하기 위한 방어 기작으로 스트레스 저항성 단백질과 조절 단백질이 생성된다. 앱시스산은 이러한 신호전달 역할을 하는 호르몬 분자로 잘 알려져 있으며, 잎의 노화, 종자의 휴면 등 식물의 생리적 반응에도 관여한다. 특히 식물이 아닌 동물, 조류(algae) 등 다른 생물계에서도 다양한 기능을 수행하는 것으로 밝혀졌다. 본 총설에서는 앱시스산의 생합성 및 신호전달 과정 그리고 그 기능에 대하여 조사하였고, 농생명공학, 의생명공학, 산업생명공학을 포함한 다양한 생명공학분야에서 앱시스산을 활용한 작물량 증대, 질병 치료제 개발, 바이오에너지 생산 등 최신 응용 연구 및 산업적 활용에 대한 동향을 살펴보았다.

Keywords

References

  1. Dangi, A. K., Sharma, B., Khangwal, I. and Shukla, P., "Combinatorial Interactions of Biotic and Abiotic Stresses in Plants and Their Molecular Mechanisms: Systems Biology Approach," Mol. Biotechnol., 60(8), 636-650(2018). https://doi.org/10.1007/s12033-018-0100-9
  2. Atkinson, N. J. and Urwin, P. E., "The Interaction of Plant Biotic and Abiotic Stresses: From Genes to the Field," J. Exp. Bot., 63(10), 3523-3543(2012). https://doi.org/10.1093/jxb/ers100
  3. Addicott, F. T., Lyon J. L., Ohkuma, K., Thiessen, W. E., Carns, H. R., Smith, O. E., Cornforth, J. W., Milborrow, B. V., Ryback, G. and Wareing, P. F., "Abscisic Acid: A New Name for Abscisin II (Dormin)," Science, 159(3822), 1493(1968). https://doi.org/10.1126/science.159.3822.1493
  4. Strausz, S. D., "A Study of the Physiology of Dormancy in the Genus Pyrus," Ph.D. Dissertation, Oregon State University, Corvallis, Oregon(1970).
  5. Cornforth, J. W., Milborrow, B. V., Ryback, G., Rothwell, K. and Wain, R. L., "Identification of the Yellow Lupin Growth Inhibitor as (+)-Abscisin II ((+)-Dormin)," Nature, 211(5050), 742-743(1966).
  6. Zhang, X. L., Jiang, L., Xin, Q., Liu, Y., Tan, J. X. and Chen, Z. Z., "Structural Basis and Functions of Abscisic Acid Receptors PYLs," Front. Plant Sci., 6, 88(2015). https://doi.org/10.3389/fpls.2015.00088
  7. Sah, S. K., Reddy, K. R. and Li, J., "Abscisic Acid and Abiotic Stress Tolerance in Crop Plants," Front. Plant Sci., 7, 571(2016).
  8. Lawas, L. M. F., Zuther, E., Jagadish, S. K. and Hincha, D. K., "Molecular Mechanisms of Combined Heat and Drought Stress Resilience in Cereals," Curr. Opin. Plant Biol., 45(Part B), 212-217(2018). https://doi.org/10.1016/j.pbi.2018.04.002
  9. Pareek, A., Dhankher, O. P. and Foyer, C. H., "Mitigating the Impact of Climate Change on Plant Productivity and Ecosystem Sustainability," J. Exp. Bot., 71(2), 451-456(2020). https://doi.org/10.1093/jxb/erz518
  10. Ray, S., Mondal, W. A. and Choudhuri, M. A., "Regulation of Leaf Senescence, Grain-filling and Yield of Rice by Kinetin and Abscisic Acid," Physiol. Plant., 59(3), 343-346(1983). https://doi.org/10.1111/j.1399-3054.1983.tb04212.x
  11. Kang, J., Yim, S., Choi, H., Kim, A., Lee, K. P., Lopez-Molina, L., Martinoia, E. and Lee, Y., "Abscisic Acid Transporters Cooperate to Control Seed Germination," Nat. Commun., 6(1), 8113(2015). https://doi.org/10.1038/ncomms9113
  12. Kobayashi, Y. and Tanaka, K., "Extraction and Measurement of Abscisic Acid in a Unicellular Red Alga Cyanidioschyzon merolae," Bio Protoc. 6(23): e2033(2016).
  13. Balino, P., Gomez-Cadenas, A., Lopez-Malo, D., Romero, F. J. and Muriach, M., "Is There A Role for Abscisic Acid, A Proven Anti-Inflammatory Agent, in the Treatment of Ischemic Retinopathies?," Antioxidants, 8(4), 104(2019). https://doi.org/10.3390/antiox8040104
  14. Finkelstein, R., "Abscisic Acid Synthesis and Response," Arabidopsis Book, 11, e0166(2013). https://doi.org/10.1199/tab.0166
  15. Xiong, L. and Zhu, J. K., "Regulation of Abscisic Acid Biosynthesis," Plant Physiol., 133(1), 29-36(2003). https://doi.org/10.1104/pp.103.025395
  16. Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., Kumar, V., Verma, R., Upadhyay, R. G., Pandey, M. and Sharma, S., "Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects," Front. Plant Sci., 8, 161(2017).
  17. Saroj, K. S., Kambham, R. R. and Jiaxu, L., "Abscisic Acid and Abiotic Stress Tolerance in Crop Plants," Front. Plant Sci., 7, 571(2016).
  18. Wu, F. Q., Xin, Q., Cao, Z., Liu, Z. Q., Du, S. Y., Mei, C., Zhao, C. X., Wang, X. F., Shang, Y., Jiang, T., Zhang, X. F., Yan, L., Zhao, R., Cui, Z. N., Liu, R., Sun, H. L., Yang, X. L., Su, Z. and Zhang, D. P., "The Magnesium-Chelatase H Subunit Binds Abscisic Acid and Functions in Abscisic Acid Signaling: New Evidence in Arabidopsis," Plant Physiol., 150(4), 1940-1954(2009). https://doi.org/10.1104/pp.109.140731
  19. Muller, A. H. and Hansson, M., "The Barley Magnesium Chelatase 150-kD Subunit Is Not an Abscisic Acid Receptor," Plant Physiol., 150(1), 157-166(2009). https://doi.org/10.1104/pp.109.135277
  20. Tsuzuki, T., Takahashi, K., Inoue, S., Okigaki, Y., Tomiyama, M., Hossain, M. A., Shimazaki, K., Murata, Y. and Kinoshita, T., "Mg-chelatase H Subunit Affects ABA Signaling in Stomatal Guard Cells, but Is Not an ABA Receptor in Arabidopsis thaliana," J. Plant Res., 124(4), 527-538(2011). https://doi.org/10.1007/s10265-011-0426-x
  21. Wang, X. F. and Zhang, D. P., "Abscisic Acid Receptors: Multiple Signal-perception Sites," Ann. Bot., 101(3), 311-317(2008). https://doi.org/10.1093/aob/mcm284
  22. Pandey, S., Nelson, D. C. and Assmann, S. M., "Two Novel GPCRType G Proteins Are Abscisic Acid Receptors in Arabidopsis," Cell, 136(18), 136-148(2009). https://doi.org/10.1016/j.cell.2008.12.026
  23. Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T. F., Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J. K., Schroeder, J. I., Volkman, B. F. and Cutler, S. R., "Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins," Science, 324(5930), 1068-1071(2009). https://doi.org/10.1126/science.1173041
  24. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. and Grill, E., "Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors," Science, 324(5930), 1064-1068(2009). https://doi.org/10.1126/science.1172408
  25. Lim, C. W., Baek, W., Han, S. W. and Lee, S. C., "Arabidopsis PYL8 Plays an Important Role for ABA Signaling and Drought Stress Responses," Plant Pathol. J., 29(4), 471-476(2013). https://doi.org/10.5423/PPJ.NT.07.2013.0071
  26. Qiu, J., Hou, Y., Wang, Y., Li, Z., Zhao, J., Tong, X., Lin, H., Wei, X., Ao, H. and Zhang, J., "A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.)," Int. J. Mol. Sci., 18(1), 60(2017). https://doi.org/10.3390/ijms18010060
  27. Tischer, S. V., Wunschel, C., Papacek, M., Kleigrewe, K., Hofmann, T., Christmann, A. and Grill, E., "Combinatorial Interaction Network of Abscisic Acid Receptors and Coreceptors from Arabidopsis thaliana," Proc. Natl. Acad. Sci. USA, 114(38), 10280-10285 (2017). https://doi.org/10.1073/pnas.1706593114
  28. Khan, Z. H., Kumar, B., Dhatterwal, P., Mehrotra, S. and Mehrotra, R., "Transcriptional Regulatory Network of Cis-Regulatory Elements (Cres) and Transcription Factors (Tfs) In Plants During Abiotic stress," Int. J. Plant Biol. Res., 5(2), 1064-1081(2017).
  29. Nakashima, K. and Suenaga, K., "Toward the Genetic Improvement of Drought Tolerance in Crops," Jpn. Agric. Res. Q., 51(1), 1-10(2017). https://doi.org/10.6090/jarq.51.1
  30. Pei, Z. M., Ghassemian, M., Kwak, C. M., McCourt, P. and Schroeder, J. I., "Role of Farnesyltransferase in ABA Regulation of Guard Cell Anion Channels and Plant Water Loss," Science, 282(5387), 287-290(1998). https://doi.org/10.1126/science.282.5387.287
  31. Zeevaart, J. A. D. and Creelman, R. A., "Metabolism and Physiology of Abscisic Acid," Annu. Rev. Plant Physiol., 39(1), 439-473(1988). https://doi.org/10.1146/annurev.pp.39.060188.002255
  32. Osakabe, Y., Osakabe, K., Shinozaki, K. and Tran, L. P., "Response of Plants to Water Stress," Front. Plant Sci., 5, 86(2014).
  33. Darwin, F., "Observations on Stomata," Philos. Trans. Royal Soc., London, 190, 531-621(1898).
  34. Bauer, H., Ache, P., Lautner, S., Fromm, J., Hartung, W., Al-Rasheid, K. A., Sonnewald, S., Sonnewald, U., Kneitz, S., Lachmann, N., Mendel, R. R., Bittner, F., Hetherington, A. M. and Hedrich, R., "The Stomatal Response to Reduced Relative Humidity Requires Guard Cell-autonomous ABA Synthesis," Curr. Biol., 23(1), 53-57(2013). https://doi.org/10.1016/j.cub.2012.11.022
  35. Mori, I. C. and Schroeder, J. I., "Reactive Oxygen Species Activation of Plant $Ca^{2+}$ Channels. A Signaling Mechanism in Polar Growth, Hormone Transduction, Stress Signaling, and Hypothetically Mechanotransduction," Plant Physiol., 135(2), 702-708(2004). https://doi.org/10.1104/pp.104.042069
  36. Joshi-Saha, A., Valon, C. and Leung, J., "A Brand New START: Abscisic Acid Perception and Transduction in the Guard Cell," Sci. Signal, 4(201), re4(2011). https://doi.org/10.1126/scisignal.2002164
  37. Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B. and Schroeder, J. I., "Mechanisms of Abscisic Acid-mediated Control of Stomatal Aperture," Curr. Opin. Plant Biol., 28, 154-162(2015). https://doi.org/10.1016/j.pbi.2015.10.010
  38. Lisar, S. Y., Motafakkerazad, R., Hossain, M. M. and Rahman, I. M. M., in I. M. M. Rahman(Ed.), Water Stress, InTech, Croatia (2012).
  39. Van der Graaff, E., Schwacke, R., Schneider, A., Desimone, M., Flugge, U. I. and Kunze, R., "Transcription Analysis of Arabidopsis Membrane Transporters and Hormone Pathways During Developmental and Induced Leaf Senescence," Plant Physiol., 141(2), 776-792(2006). https://doi.org/10.1104/pp.106.079293
  40. Himelblau, E. and Amasino, R. M., "Nutrients Mobilized from Leaves of Arabidopsis thaliana During Leaf Senescence," J. Plant Physiol., 158(10), 1317-1323(2001). https://doi.org/10.1078/0176-1617-00608
  41. Asad, M. A. U., Zakari, S. A., Zhao, Q., Zhou, L., Ye, Y. and Cheng, F., "Abiotic Stresses Intervene with ABA Signaling to Induce Destructive Metabolic Pathways Leading to Death: Premature Leaf Senescence in Plants," Int. J. Mol. Sci., 20(2), 256 (2019). https://doi.org/10.3390/ijms20020256
  42. Riov, J., Dagan, E., Goren, R. and Yang, S. F., "Characterization of Abscisic Acid-induced Ethylene Production in Citrus Leaf and Tomato Fruit Tissues," Plant Physiol., 92(1), 48-53(1990). https://doi.org/10.1104/pp.92.1.48
  43. Zhao, Y., Chan, Z., Gao, J., Xing, L., Cao, M., Yu, C., Hu, Y., You, J., Shi, H., Zhu, Y., Gong, Y., Mu, Z., Wang, H., Deng, X., Wang, P., Bressan, R. A. and Zhu, J. K., "ABA Receptor PYL9 Promotes Drought Resistance and Leaf Senescence," Proc. Natl. Acad. Sci. USA, 113(7), 1949-54(2016). https://doi.org/10.1073/pnas.1522840113
  44. Zhao, Y., Gao, J., Kim, G. I., Chen, K., Bressan, R. A. and Zhu, J. K., "Control of Plant Water Use by ABA Induction of Senescence and Dormancy: An Overlooked Lesson from Evolution," Plant Cell Physiol., 58(8), 1319-1327(2017). https://doi.org/10.1093/pcp/pcx086
  45. Huo, H., Dahal, P., Kunusoth, K., McCallum, C. M. and Bradford, K. J., "Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 Is Essential for Thermoinhibition of Lettuce Seed Germination but Not for Seed Development or Stress Tolerance," Plant Cell, 25(3), 884-900(2013). https://doi.org/10.1105/tpc.112.108902
  46. Martinez-Andujar, C., Ordiz, M. I., Huang, Z., Nonogaki, M., Beachy, R. N. and Nonogaki, H., "Induction of 9-cis-epoxycarotenoid Dioxygenase in Arabidopsis thaliana Seeds Enhances Seed Dormancy," Proc. Natl. Acad. Sci. USA, 108(41), 17225-17229(2011). https://doi.org/10.1073/pnas.1112151108
  47. Vishal, B. and Kumar, P. P., "Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid," Front. Plant Sci., 9, 838(2018). https://doi.org/10.3389/fpls.2018.00838
  48. Cowan, A. K. and Rose, P. D., "Abscisic Acid Metabolism in Salt-Stressed Cells of Dunaliella salina: Possible Interrelationship with ${\beta}$-Carotene Accumulation," Plant Physiol., 97(2), 798-803(1991). https://doi.org/10.1104/pp.97.2.798
  49. Lee, K. W., Hong, S., Rahman, M. A., Ji, H. C., Cha, J. Y., Jones, C. S., Son, D. and Lee, S. H. "Ectopic Overexpression of Teff Grass (Eragrostis tef) Phi-class Glutathione S-transferase 1 (EtGSTF1) Enhances Prokaryotic Cell Survivability against Diverse Abiotic Stresses," Biotechnol. Bioprocess Eng., 24(3), 552-559(2019). https://doi.org/10.1007/s12257-018-0495-y
  50. Brito, C., Dinis, L. T., Ferreira, H., Moutinho-Pereira, J. and Correia, C. M., "Foliar Pre-Treatment with Abscisic Acid Enhances Olive Tree Drought Adaptability," Plants, 9(3), 341(2020). https://doi.org/10.3390/plants9030341
  51. He, J., Jin, Y., Palta, J. A., Liu, H.-Y., Chen, Z. and Li, F.-M., "Exogenous ABA Induces Osmotic Adjustment, Improves Leaf Water Relations and Water Use Efficiency, But Not Yield in Soybean under Water Stress," Agronomy, 9(7), 395(2019). https://doi.org/10.3390/agronomy9070395
  52. Takeuchi, J., Okamoto, M., Mega, R., Kanno, Y., Ohnishi, T., Seo, M. and Todoroki, Y., "Abscinazole-E3M, a Practical Inhibitor of Abscisic Acid 8′-hydroxylase for Improving Drought Tolerance," Sci. Rep., 6(1), 37060(2016). https://doi.org/10.1038/srep37060
  53. Okazaki, M., Nimitkeatkai, H., Muramatsu, T., Aoyama, H., Ueno, K., Mizutani, M., Hirai, N., Kondo, S., Ohnishi, T. and Todoroki, Y., "Abscinazole-E1, a Novel Chemical Tool for Exploring the Role of ABA 8'-hydroxylase CYP707A," Bioorg. Med. Chem., 19(1), 406-413(2011). https://doi.org/10.1016/j.bmc.2010.11.011
  54. Okazaki, M., Kittikorn, M., Ueno, K., Mizutani, M., Hirai, N., Kondo, S., Ohnishi, T. and Todoroki, Y., "Abscinazole-E2B, a Practical and Selective Inhibitor of ABA 8'-hydroxylase CYP707A," Bioorg. Med. Chem., 20(10), 3162-3172(2012). https://doi.org/10.1016/j.bmc.2012.03.068
  55. Han, S., Min, M. K., Lee, S. Y., Lim, C. W., Bhatnagar, N., Lee, Y., Shin, D., Chung, K. Y., Lee, S. C., Kim, B. G. and Lee, S., "Modulation of ABA Signaling by Altering VxG$\Phi$L Motif of PP2Cs in Oryza sativa," Mol. Plant, 10(9), 1190-1205(2017). https://doi.org/10.1016/j.molp.2017.08.003
  56. Richardson, W. C., Badrakh, T., Roundy, B. A., Aanderud, Z. T., Petersen, S. L., Allen, P. S., Whitaker, D. R. and Madsen, M. D., "Influence of an Abscisic Acid (ABA) Seed Coating on Seed Germination Rate and Timing of Bluebunch Wheatgrass," Ecol. Evol, 9, 7438-7447(2019). https://doi.org/10.1002/ece3.5212
  57. Badrakh, T., "Effects of Abscisic Acid (ABA) on Germination Rate of Three Rangeland Species,"MSc Dissertation, Brigham Young University, Provo, Utah(2016).
  58. Lievens, L., Pollier, J., Goossens, A., Beyaert, R. and Staal, J., "Abscisic Acid as Pathogen Effector and Immune Regulator," Front. Plant Sci., 8, 587(2017).
  59. Guri, A. J., Evans, N. P., Hontecillas, R. and Bassaganya-Riera, J., "T Cell PPAR${\gamma}$ Is Required for the Anti-inflammatory Efficacy of Abscisic Acid Against Experimental IBD," J. Nutr. Biochem, 22(9), 812-819(2011). https://doi.org/10.1016/j.jnutbio.2010.06.011
  60. Li, H. H., Hao, R. L., Wu, S. S., Guo, P. C., Chen, C. J., Pan, L. P. and Ni, H., "Occurrence, Function and Potential Medicinal Applications of the Phytohormone Abscisic Acid in Animals and Humans," Biochem. Pharmacol, 82(7), 701-712(2011). https://doi.org/10.1016/j.bcp.2011.06.042
  61. Zocchi, E., Hontecillas, R., Leber, A., Einerhand, A., Carbo, A., Bruzzone, S., Tubau-Juni, N., Philipson, N., Zoccoli-Rodriguez, V., Sturla, L. and Bassaganya-Riera, J., "Abscisic Acid: A Novel Nutraceutical for Glycemic Control," Front. Nutr., 4, 24(2017). https://doi.org/10.3389/fnut.2017.00024
  62. Bruzzone, S., Moreschi, I., Usai, C., Guida, L., Damonte, G., Salis, A., Scarfì, S., Millo, E., De Flora, A. and Zocchi, E., "Abscisic Acid Is an Endogenous Cytokine in Human Granulocytes with Cyclic ADP-ribose as Second Messenger," Proc. Natl. Acad. Sci. USA, 104(14), 5759-5764(2007). https://doi.org/10.1073/pnas.0609379104
  63. Lehmann, J. M,, Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M. and Kliewer, S. A., "An Antidiabetic Thiazolidinedione Is a High Affinity Ligand for Peroxisome Proliferator-activated Receptor Gamma (PPAR gamma)," J. Biol. Chem., 270(22), 12953-12956(1995). https://doi.org/10.1074/jbc.270.22.12953
  64. Guri, A. J., Hontecillas, R., Si, H., Liu, D. and Bassaganya-Riera, J., "Dietary Abscisic Acid Ameliorates Glucose Tolerance and Obesity-related Inflammation in db/db Mice Fed High-fat Diets," Clin. Nutr., 26(1), 107-116(2007). https://doi.org/10.1016/j.clnu.2006.07.008
  65. Magnone, M., Emionite, L., Guida, L., Vigliarolo, T., Sturla, L., Spinelli, S., Buschiazzo, A., Marini, C., Sambuceti, G., De Flora, A., Orengo, AM., Cossu, V., Ferrando, S., Barbieri, O. and Zocchi, E., "Insulin-independent Stimulation of Skeletal Muscle Glucose Uptake by Low-dose Abscisic Acid via AMpK Activation," Sci. Rep., 10(1), 1454(2020). https://doi.org/10.1038/s41598-020-58206-0
  66. Weller, J. and Budson, A., "Current Understanding of Alzheimer's Disease Diagnosis and Treatment," F1000Res., 7, 1161(2018). https://doi.org/10.12688/f1000research.14506.1
  67. Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M. and Lamb, B. T., "Inflammation as a Central Mechanism in Alzheimer's Disease," Alzheimers Dement (NY), 4, 575-590(2018). https://doi.org/10.1016/j.trci.2018.06.014
  68. Biundo, F., Del Prete, D., Zhang, H., Arancio, O. and D'Adamio, L., "A Role for Tau in Learning, Memory and Synaptic Plasticity," Sci. Rep., 8(1), 3184(2018). https://doi.org/10.1038/s41598-018-21596-3
  69. Govindarajulu, M., Pinky, P. D., Bloemer, J., Ghanei, N., Suppiramaniam, V. and Amin, R., "Signaling Mechanisms of Selective $PPAR{\gamma}$ Modulators in Alzheimer's Disease," PPAR Res., 2018, 2010675(2018). https://doi.org/10.1155/2018/2010675
  70. Prakash, A. and Kumar, A., "Role of Nuclear Receptor on Regulation of BDNF and Neuroinflammation in Hippocampus of ${\beta}$-amyloid Animal Model of Alzheimer's Disease," Neurotox. Res., 25(4), 335-347(2014). https://doi.org/10.1007/s12640-013-9437-9
  71. Liu, J., Gu, X., Zou, R., Nan, W., Yang, S., Wang, H. L. and Chen, X. T., "Phytohormone Abscisic Acid Improves Spatial Memory and Synaptogenesis Involving NDR1/2 Kinase in Rats," Front. Pharmacol., 9, 1141(2018). https://doi.org/10.3389/fphar.2018.01141
  72. Lee, K., Lee, Y. J., Chang, H. N. and Jeong, K. J., "Engineering Trichosporon oleaginosus for Enhanced Production of Lipid from Volatile Fatty Acids as Carbon Source," Korean J. Chem. Eng., 36(6), 903-908(2019). https://doi.org/10.1007/s11814-018-0229-7
  73. Joshi, R., Singla-Pareek, S. L. and Pareek, A., "Engineering Abiotic Stress Response in Plants for Biomass Production," J. Biol. Chem., 293(14), 5035-5043(2018). https://doi.org/10.1074/jbc.TM117.000232
  74. Rahpeyma, S. S. and Raheb, J., "Microalgae Biodiesel as a Valuable Alternative to Fossil Fuels," Bioenergy Res., 12(4), 958-965 (2019). https://doi.org/10.1007/s12155-019-10033-6
  75. Ju, J. H., Oh, B. R., Ryu, S. K., Heo, S. Y., Kim, S. Y., Hong, W. K., Kim, C. H. and Seo, J. W., "Production of Lipid Containing High Levels of Docosahexaenoic Acid by Cultivation of Aurantiochytrium sp. KRS101 using Jerusalem artichoke extract," Biotechnol. Bioprocess Eng., 23(6), 726-732(2018). https://doi.org/10.1007/s12257-018-0419-x
  76. Choi, Y. Y., Hong, M. E., Chang, W. S. and Sim, S. J., "Autotrophic Biodiesel Production from the Thermotolerant Microalga Chlorella sorokiniana by Enhancing the Carbon Availability with Temperature Adjustment," Biotechnol. Bioprocess Eng., 24(1), 223-231(2019). https://doi.org/10.1007/s12257-018-0375-5
  77. Lee, J. H., Lee, H. U., Lee, J. H., Lee, S. K., Yoo, H. Y., Park, C. and Kim, S. W., "Continuous Production of Bioethanol Using Microalgal Sugars Extracted from Nannochloropsis gaditana," Korean J. Chem. Eng., 36(1), 71-76(2019). https://doi.org/10.1007/s11814-018-0173-y
  78. Muthuraj, M., Selvaraj, B., Palabhanvi, B., Kumar, V. and Das, D., "Enhanced Lipid Content in Chlorella sp. FC2 IITG via High Energy Irradiation Mutagenesis," Korean J. Chem. Eng., 36(1), 63-70(2019). https://doi.org/10.1007/s11814-018-0180-z
  79. Contreras-Pool, P. Y., Peraza-Echeverria1, S., Ku-Gonzalez, Á. F. and Herrera-Valencia, V. A., "The Phytohormone Abscisic Acid Increases Triacylglycerol Content in the Green Microalga Chlorella saccharophila (Chlorophyta)," ALGAE, 31(3), 267-276(2016). https://doi.org/10.4490/algae.2016.31.9.3
  80. Sulochana, S. B. and Arumugam, M., "Influence of Abscisic Acid on Growth, Biomass and Lipid Yield of Scenedesmus quadricauda Under Nitrogen Starved Condition," Bioresour. Technol., 213, 198-203(2016). https://doi.org/10.1016/j.biortech.2016.02.078
  81. Sulochana, S. B. and Arumugam, M., "Influence of Abscisic Acid on Growth, Biomass and Lipid Yield of Scenedesmus quadricauda under Nitrogen Starved Condition," Bioresour. Technol., 213, 198-203(2016). https://doi.org/10.1016/j.biortech.2016.02.078
  82. Lu, Y., Tarkowska, D., Tureckova, V., Luo, T., Xin, Y., Li, J., Wang, Q., Jiao, N., Strnad, M. and Xu, J., "Antagonistic Roles of Abscisic Acid and Cytokinin During Response to Nitrogen Depletion in Oleaginous Microalga Nannochloropsis oceanica Expand the Evolutionary Breadth of Phytohormone Function," Plant J., 80(1), 52-68(2014). https://doi.org/10.1111/tpj.12615
  83. Lin, B., Ahmed, F., Du, H., Li, Z., Yan, Y., Huang, Y., Cui, M., Yin, Y., Li, B., Wang, M., Meng, C. and Gao, Z., "Plant Growth Regulators Promote Lipid and Carotenoid Accumulation in Chlorella vulgaris," J. Appl. Phycol., 30, 1549-1561(2017). https://doi.org/10.1007/s10811-017-1350-9
  84. Sivaramakrishnan, R. and Incharoensakdi, A., "Plant Hormone Induced Enrichment of Chlorella sp. Omega-3 Fatty Acids," Biotechnol. Biofuels, 13(7), 1-14(2020). https://doi.org/10.1186/s13068-019-1642-1