DOI QR코드

DOI QR Code

Analysis of Chemistry Teachers' Cognitive level related to Two Types of Acid-Base Models based on Epistemological and Ontological viewpoint

인식론 및 존재론적 관점에서 두 유형의 산·염기 모델에 대한 화학 교사들의 인지 수준 분석

  • Received : 2020.04.20
  • Accepted : 2020.05.24
  • Published : 2020.09.28

Abstract

This study analyzed the level of chemistry teachers' cognition related to two types of acid-base models taught in secondary schools. For the purpose, a questionnaire was developed to identify teachers' cognitions based on previous studies that analyzed the 'Ignorance' of each model. The questionnaire consisted of two items, one related to acid and base reactions and one related to acid and base dissociation, which suggested inconsistencies between the two models. The subjects were 15 chemistry teachers, and as a result, teachers' cognitions were analyzed at four levels. The four levels are: if they don't know the two models, if they only understand one model, if they understand the two models, and perceived the 'Ignorance' of one model, and if they understand the two models and perceived the 'Ignorance' of the two models. The largest proportion of teachers understood the two models and perceived the 'Ignorance' of one model. However, the proportion of understanding the two models and perceiving the 'Ignorance' of the two models was very small. Through this, we argued that efforts to increase the level of chemistry teachers' cognition of the model and 'Ignorance' were necessary.

본 연구에서는 중등학교에서 가르치는 두 유형의 산-염기 모델에 대한 화학 교사들의 인지 수준을 분석하였다. 이를 위하여 각 모델이 가지는 '이그노런스'를 분석한 선행 연구를 토대로, 교사들의 인지를 알아보는 설문을 개발하였다. 설문은 두 모델에 대한 불일치 상황을 제시한 산과 염기 반응에 관련된 문항과 산과 염기 해리와 관련된 문항 등 2문항이었다. 연구 대상자는 15명의 화학 교사들이었으며, 설문 분석 결과, 4가지 수준으로 교사의 인지가 분석되었다. 4가지 수준은, 모델을 모르는 경우, 한 모델만 이해하는 경우, 두 모델을 이해하고, 한 모델의 '이그노런스'를 지각하는 경우, 두 모델을 이해하고 두 모델의 '이그노런스'를 지각하는 경우였다. 가장 큰 비율의 교사들은 두 모델을 이해하고, 한 모델의 '이그노런스'를 인지하는 경우였다. 그러나 두 모델을 이해하고 두 모델의 '이그노런스'를 지각하는 경우의 비율은 매우 적었다. 이를 통해 모델과 '이그노런스'에 대한 화학교사들의 인지 수준을 높이기 위한 노력이 필요함을 주장하였다.

Keywords

References

  1. Chang, H. S. Is Water $H_{2}O$?:Evidence, Realism and Pluralism; Springer Science & Business Media: London, 2012.
  2. Firestein, S. Ignorance: How It Drives Science; Oxford University Press: USA, 2012.
  3. Smithson, M. Research Article 1993, 15, 133.
  4. Edwards, J. Research in Science Education 1990, 20, 66. https://doi.org/10.1007/BF02620481
  5. Lyu, E. J.; Paik, S. H. Journal of the Korean Chemical Society 2020, 64, 175. https://doi.org/10.5012/JKCS.2020.64.3.175
  6. Buckley, B. C.; Boulter, C. J. Investigating the role of representations and expresed models in building mental models. In Developing models in science education, Gilbert, J. K.; Boulter, C. J., Eds., Kluwer Academic: Dordrecht, The Netherlands, 2000, 119.
  7. Schwarz, C. V.; Gwekwerere, Y. N. Science Education 2007, 91, 158. https://doi.org/10.1002/sce.20177
  8. Snow, R. E. International Journal of Educational Research, 1990, 14, 45.
  9. Redish, E. F. American Journal of Physics, 1994, 62, 792. https://doi.org/10.1119/1.17461
  10. Kang, N. H. Journal of the Korean Association for Science Education 2017, 37, 143. https://doi.org/10.14697/jkase.2017.37.1.0143
  11. Clement, J. J. International Journal of Science Education 2000, 22, 1041. https://doi.org/10.1080/095006900416901
  12. Clement, J. J.; Rea-Ramirez, M. A.; Mimez-Oviedo, M. C. An instructional model derived from model construction and criticism theory. In Model Based Learning and Instruction in Science, Clement, J. J.;Rea-Ramirez, M. A., Eds., Kluwer Academic:Dordrecht, The Netherlands, 2008, 23.
  13. Gobert, J. D.; O'Dwyer, L.; Horwitz, P.; Buckley, B.; Levy, S.; Wilensky, U. International Journal of Science Education 2011, 33, 653. https://doi.org/10.1080/09500691003720671
  14. Justi, R.; Gilbert, J. K. International Journal of Science Education 2002, 25, 1369. https://doi.org/10.1080/0950069032000070324
  15. Lehrer, R.; Schuable, L. Cultivating model-based reasoning in science education. In Cambridge handbook of the learning sciences, Sawyer, R. K. Ed., Cambridge University Press: West Nyack, NY, USA, 2006, 371.
  16. Suckling, C. J.; Suckling, K. E.; Suckling, C. W. Chemistry through models. Concepts and applications of modeling in chemical science, technology and industry; Cambridge University Press:Cambridge, 1978.
  17. Asnat, R. Z.; Sharona, T. L. Journal of Research in Science Teaching 2019, 56, 881. https://doi.org/10.1002/tea.21532
  18. Shermer, M. Nature 2012, 484, 446. https://doi.org/10.1038/484446a
  19. Furio-Mas, C.; Calatayud, M. L.; Guisasolac, J.; Furio-Gomeza, C. International Journal of Science Education 2005, 27, 1337. https://doi.org/10.1080/09500690500102896
  20. Paik, S. H. Journal of chemical education 2015, 92, 1484. https://doi.org/10.1021/ed500891w
  21. Paik, S. H.; Choi, J. I.; Park, E. J. Journal of the Korean Association for Science Educationdu 2013, 33, 1273. https://doi.org/10.14697/jkase.2013.33.7.1273
  22. Jo, G. H. Using examples and students' conceptual understanding in school science : focusing on the concepts of mechanics in middle school, Ph. D., Seoul National University, 2005.
  23. Collette, A. T.; Chiappetta, E. L. Science Instruction in the Middle and Secondary Schools, Merrill Publishing Company: Columbus, 1986, 255-258.
  24. Paik, S. H.; Kim, S. K. The Korean Society of Computer and Information 2017, 25, 381.
  25. Wobbe, D. V.; Albert, P. Journal of Chemistry Education 2001, 78, 494. https://doi.org/10.1021/ed078p494
  26. Drechsler, M.; Schmidt, H. Journal of Chemistry Education Research and Practice 2005, 6, 19. https://doi.org/10.1039/B4RP90002B
  27. Carr, M. Research in Science Education 1984, 14, 97. https://doi.org/10.1007/BF02356795
  28. Zumdahl, S. S.; Zumdahl, S. A. Chemistry 8th ed.; Cengage Learning: Singapore, 2010.
  29. Oxtoby, D.; Gillis, H. P.; Campion, A. Principles of Modern Chemistry, 7th ed.; Cengage Learning: NY, 2012.
  30. John, H.; Go, M. J. The History of Chemistry; Book's hill: Seoul, 2005.
  31. Brubaker, C. H., Jr. Journal of Chemical Education 1957, 34, 325 https://doi.org/10.1021/ed034p325
  32. Go, H. S.; Kim, K. E.; Paik, S. H. Journal of the Korean Chemical Society 2012, 56, 628. https://doi.org/10.5012/jkcs.2012.56.5.628
  33. Paik, S. H.; Go, H. S.; Jeon, M. C. Journal of the Korean Chemical Society 2013, 57, 279. https://doi.org/10.5012/jkcs.2013.57.2.279
  34. Paik, S. H. The history of chemistry: imotionmedia: Seoul, 2018.
  35. Creswell, J. W.; Miller, D. L. Theory Into Practice, 2000, 39, 124. https://doi.org/10.1207/s15430421tip3903_2
  36. Kim, S. G.; Choi, H.; Park, C. Y.; Paik, S. H. Journal of the Korean Chemical Society 2019, 63, 56. https://doi.org/10.1002/bkcs.11664
  37. Kim, S. G.; Kim, J. E.; Paik, S. H. Journal of the Korean Chemical Society 2019, 63, 102. https://doi.org/10.5012/JKCS.2019.63.2.102

Cited by

  1. 고등학교 과학영재 학생들의 산-염기 모델의 인지 수준 분석 vol.65, pp.1, 2021, https://doi.org/10.5012/jkcs.2021.65.1.37