참고문헌
- Amabili, M. (1999), "Vibration of circular tubes and shells filled and partially immersed in dense fluids", J. Sound Vib., 221(4), 567-585. https://doi.org/10.1006/jsvi.1998.2050.
- Amabili, M., Pellicano, F. and Paidoussis, M.P. (1998), "Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid", J. Fluids Struct., 12(7), 883-918. https://doi.org/10.1006/jfls.1999.0225.
- Ansari, R. and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled carbon nanotubes: An analytical approach", Int. J. Nano Dimens., 6(5), 453-462. https://doi.org/10.7508/IJND.2015.05.002.
- Arshad, S.H., Naeem, M.N. and Sultana, N. (2007), "Frequency analysis of functionally graded cylindrical shells with various volume fraction laws", J. Mech. Eng. Sci., 221, 1483-1495. https://doi.org/10.1243/09544062JMES738.
- Asghar, S., Naeem, M.N. and Hussain, M. (2019), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E Low Dimens. Syst. Nanostruct., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Composite Struct., 30(6), 603-606. https://doi.org/10.12989/scs.2019.30.6.603.
- Chen, Y., Zhao, H.B. and Shea, Z.P. (1993), "Vibrations of high-speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160, 137-160. https://doi.org/10.1006/jsvi.1993.1010.
- Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-part II: Numerical results", Int. J. Solids Struct., 43, 3657-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010.
- Chung, H., Turula, P., Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-120. https://doi.org/10.1016/0029-5493(81)90020-0.
- Dong, S.B. (1977), "A block-stodola eigen solution technique for large algebraic systems with nonsymmetrical matrices", Int. J. Number Methods Eng., 11, 247-267. https://doi.org/10.1002/nme.1620110204.
- Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
- Ersoy, H., Mercan, K. and Civalek, O. (2018), "Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods", Composite Struct., 183, 7-20. https://doi.org/10.1016/j.compstruct.2016.11.051.
- Farahani, H. and Barati, F. (2015), "Vibration of submerged functionally graded cylindrical shell based on first order shear deformation theory using wave propagation method", Struct. Eng. Mech., 53(3), 575-587. https://doi.org/10.12989/sem.2015.53.3.575.
- Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M., (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203.
- Flügge, W. (1962), Stresses in shells, Springer-Verlag, Berlin.
- Gasser, L.F.F. (1987), "Free vibrations on thin cylindrical shells containing liquid", M.Sc. Dissertation, Federal University of Rio de Janerio, Rio de Janerio, Portugal.
- Goncalves, P.B. and Batista, R.C. (1988), "Non-linear vibration analysis of fluid-filled cylindrical shells", J. Sound Vib., 127(1), 133-143. https://doi.org/10.1016/0022-460X(88)90354-9.
- Goncalves, P.B., Da Silva, F.M.A. and Prado, Z.J.G.N. (2006), "Transient stability of empty and fluid-filled cylindrical shells", J. Braz. Soc. Mech. Sci. Eng., 28(3), 331-333. http://dx.doi.org/10.1590/S1678-58782006000300011.
- Gonçalves, P.B., Silva, F. and del Prado, Z.J. (2006), "Transient stability of empty and fluid-filled cylindrical shells international symposium on dynamic problems of mechanics, J. Brazilian Society Mech. Sci. Eng., 28(3), 331-338. https://doi.org/10.1590/S1678-58782006000300011.
- Hussain, M, Naeem, M.N. and Taj. M. (2019b), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.
- Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1),155-164. https://doi.org/10.5194/ms-8-155-2017.
- Hussain, M. and Naeem, M.N. (2018a), Advance Testing and Engineering, Intechopen, London, U.K.
- Hussain, M. and Naeem, M.N. (2018b), Novel Nanomaterials: Synthesis and Applications, Intechopen, London, U.K. https://doi.org/10.5772/intechopen.73503.
- Hussain, M. and Naeem, M.N. (2019a), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
- Hussain, M. and Naeem, M.N. (2019b), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
- Hussain, M. and Naeem, M.N. (2020), "Mass density effect on vibration of zigzag and chiral SWCNTs", J. Sandw. Struct. Mater., 1099636220906257. https://doi.org/10.1177/1099636220906257.
- Hussain, M., Naeem, M., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
- Hussain, M., Naeem, M.N and Tounsi, A. (2020), "Simulating vibration of single-walled carbon nanotube based on Relagh-Ritz Method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
- Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018a), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459.
- Hussain, M., Naeem, M.N. and Taj, M. (2019c), "Effect of length and thickness variations on the vibration of SWCNTs based on Flügge's shell model", Micro Nano Lett., 15(1), 1-6. https://doi.org/10.1049/mnl.2019.0309.
- Hussain, M., Naeem, M.N., Shahzad, A., He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with functionally graded material using wave propagation approach", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320.
- Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
- Jiang, J. and Olson, M.D. (1994), "Vibrational analysis of orthogonally stiffened cylindrical shells using super elements", J. Sound Vib., 173, 73-83. https://doi.org/10.1006/jsvi.1994.1218.
- Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., 28(6), 735-748. https://doi.org/10.12989/scs.2018.28.6.735.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Lam, K.Y. and Loy, C.T. (1998), "Influence of boundary conditions for a thin laminated rotating cylindrical shell", Compos. Struct., 41, 215-228. https://doi.org/10.1016/S0263-8223(98)00012-9.
- Li, H., Pang, F., Du, Y. and Gao, C. (2019), "Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells", Steel Compos. Struct., 33(2), 163-180. https://doi.org/10.12989/scs.2019.33.2.163.
- Love, A.E.H. (1888), "The small free vibrations and deformation of a thin elastic shell", Philos. Trans. R. Soc. Lond. B Biol. Sci., 179, 491-546. https://doi.org/10.1098/rsta.1888.0016.
- Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.
- Loy, C.T., Lam, K.L. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3), 193-198. https://doi.org/10.3233/SAV-1997-4305.
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Mercan, K., Demir, C. and Civalek, O. (2016), "Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique", Curved Layer. Struct., 3(1), 0007. https://doi.org/10.1515/cls-2016-0007.
- Naeem, M.N., Ghamkhar, M., Arshad, S.H., and Shah, A.G. (2013), "Vibration analysis of submerged thin FGM cylindrical shells", J Mech. Sci. Technol., 27(3), 649-656. https://doi.org/10.1007/s12206-013-0119-6.
- Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mech., 191, 75-91. https://doi.org/10.1007/s00707-006-0438-0.
- Orsberg, K. (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Amer. Institute Aeronautics Astronautics, 2, 182-189.
- Rahimi, G.H., Ansari, R. and Hemmatnezhad, M. (2011), "Vibration of functionally graded cylindrical shells with ring support", Sci. Iran., 18(6), 1313-1320. https://doi.org/10.1016/j.scient.2011.11.026.
- Sehar, A., Hussain, M., Naeem M.N. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
- Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and without Longitudinal Stiffeners, NASA, Washington D.C., U.S.A.
- Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Math. Mech., 30(5), 607-615. https://doi.org/10.1007/s10483-009-0507-x.
- Sharma, C.B. and Johns, D.J. (1971), "Vibration characteristics of a clamped-free and clamped-ringstiffened circular cylindrical shell", J. Sound Vib., 14(4), 459-474. https://doi.org/10.1016/0022-460X(71)90575-X.
- Sharma, C.B., Darvizeh, M. and Darvizeh, A. (1998), "Natural frequency response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8.
- Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
- Sodel, W. (1981), Vibration of Shell and Plates, Mechanical Engineering Series, New York, U.S.A.
- Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Eng., 2, 228-236. https://doi.org/10.4236/eng.2010.2403.
- Sofiyev, A.H., Alizada, A.N., Akin, O., Valiyev, A., Avcar, M. and Adiguzel, S. (2012), "On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations", Acta Mech., 223(1), 189-204. https://doi.org/10.1007/s00707-011-0548-1.
- Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites part 2: Thermo mechanical behavior", Int. Mater. Rev., 42(3), 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
- Toulokian, Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, Macmillan, New York, U.S.A.
- Wang, C. and Lai, J.C.S. (2000), "Prediction of natural frequencies of finite length circular cylindrical shells", Appl. Acoust., 59(4), 385-400. https://doi.org/10.1016/S0003-682X(99)00039-0.
- Wang, C.M., Swaddiwudhipong, S. and Tian, J. (1997), "Ritz method for vibration analysis of cylindrical shells with ring-stiffeners", J. Eng. Mech., 123, 134-143. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(134).
- Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7, 399-407. https://doi.org/10.1243/JMES-JOUR-1965-007-062-02.
- Wuite, J. and Adali, S. (2005), "Deflection and stress behavior of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71(3-4), 388-96. https://doi.org/10.1016/j.compstruct.2005.09.011.
- Xiang, Y., Ma, Y.F., Kitipornchai, S. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech. Sci., 44(9), 1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1.
- Xuebin, L. (2008), "Study on free vibration analysis of circular cylindrical shells using wave propagation", J. Sound Vib., 311, 667-682. https://doi.org/10.1016/j.jsv.2007.09.023.
- Zhang, X.M. (2002), "Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach", Comput. Methods Appl. Mech. Eng., 191, 2057-2071. https://doi.org/10.1016/S0045-7825(01)00368-1.
- Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62, 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1.