DOI QR코드

DOI QR Code

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A. (Mechanical Engineering Dept., Faculty of Engineering, King Abdulaziz University) ;
  • Omar, Fatema-Alzahraa (Mechanical Design and Production Dept., Faculty of Engineering, Zagazig University) ;
  • Abdalla, Waleed S. (Mechanical Design and Production Dept., Faculty of Engineering, Zagazig University) ;
  • Kabeel, Abdallah M. (Mechanical Design and Production Dept., Faculty of Engineering, Zagazig University) ;
  • Alshorbagy, Amal E. (Mechanical Design and Production Dept., Faculty of Engineering, Zagazig University)
  • Received : 2018.02.21
  • Accepted : 2020.05.29
  • Published : 2020.10.10

Abstract

This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

Keywords

Acknowledgement

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant no. (DF-523-135-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

References

  1. Abdalrahmaan, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M., and Hendi, A.A. (2019). "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
  2. Almitani, K.H., Abdalrahmaan, A.A., Eltaher, M.A., (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.
  3. Almitani, K.H., Abdalrahmaan, A.A., Eltaher, M.A., (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555.
  4. Alshorbagy, A. E., Eltaher, M. A. and Mahmoud, F. F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  5. Ansari, R., Gholami, R., Norouzzadeh, A. and Darabi, M. A. (2015), "Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model", Acta Mechanica Sinica, 31(5), 708-719. https://doi.org/10.1007/s10409-015-0435-4.
  6. Ansari, R., Torabi, J. and Hassani, R. (2019), "Vibration analysis of FG-CNTRC plates with an arbitrarily shaped cutout based on the variational differential quadrature finite element method". Mater. Res. Express, 6(12), 125086. https://doi.org/10.1088/2053-1591/ab5b57.
  7. Bourouina, H., Yahiaoui, R., Kerid, R., Ghoumid, K., Lajoie, I., Picaud, F. and Herlem, G. (2020), "The influence of hole networks on the adsorption-induced frequency shift of a perforated nanobeam using non-local elasticity theory", J. Phys. Chem. Solids, 136, 109201. https://doi.org/10.1016/j.jpcs.2019.109201.
  8. Candelas, P., Fuster, J. M., Perez-Lopez, S., Uris, A. and Rubio, C. (2019), "Observation of ultrasonic Talbot effect in perforated plates", Ultrasonics, 94, 281-284. https://doi.org/10.1016/j.ultras.2018.08.019.
  9. Chen, X. and Liew, K. (2004), "Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads", Smart Mater. Struct., 13(6), 1430. https://doi.org/10.1088/0964-1726/13/6/014.
  10. Eltaher, M., Alshorbagy, A. E. and Mahmoud, F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016.
  11. Eltaher, M. A., Mahmoud, F. F., Assie, A. E. and Meletis, E. I. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002.
  12. Eltaher, M., Khairy, A., Sadoun, A. and Omar, F.-A. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.
  13. Eltaher, M. A., Khater, M. E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51-64. http://dx.doi.org/10.12989/anr.2016.4.1.051.
  14. Eltaher, M., Abdraboh, A. and Almitani, K. (2018a), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24, 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.
  15. Eltaher, M., Kabeel, A., Almitani, K. and Abdraboh, A. (2018b), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3.
  16. Eltaher, M. A., Agwa, M. and Kabeel, A. (2018c), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4(2), 75-86. https://dx.doi.org/10.22055/jacm.2017.22579.1136.
  17. Eltaher, M. A., Attia, M. A., Soliman, A. E. and Alshorbagy, A. E. (2018d), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097.
  18. Eltaher, M. A., Mohamed, N., Mohamed, S. A. and Seddek, L. F. (2019a), "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Appl. Math. Model., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026.
  19. Eltaher, M. A., Almalki, T. A., Ahmed, K. I. and Almitani, K. H. (2019b), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. http://dx.doi.org/10.12989/anr.2019.7.1.039.
  20. Eltaher, M. A., Omar, F. A., Abdalla, W. S. and Gad, E. H. (2019c), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Wave Random Complex Media, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693.
  21. Eltaher, M. A. and Mohamed, N. (2020), "Nonlinear Stability and Vibration of Imperfect CNTs by Doublet Mechanics", Appl. Math. Comput.. 382, https://doi.org/10.1016/j.amc.2020.125311.
  22. Eltaher, M.A., Mohamed, N.A., (2020), "Vibration of nonlocal perforated nanobeams under general boundary conditions", Smart Struct. Syst., 25(4), 501-514. https://doi.org/10.12989/sss.2020.25.4.501.
  23. Eltaher, M.A., Omar F.A., Abdraboh, A.M., Abdalla, W.S., and Alshorbagy, A.E., (2020), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2). 219-228. https://doi.org/10.12989/sss.2020.25.2.219
  24. Eringen, A. C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  25. Eringen, A. C. (1984), "Plane waves in nonlocal micropolar elasticity", J. Eng. Sci., 22(8-10), 1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5.
  26. Eringen, A. C. and Edelen, D. (1972), "On nonlocal elasticity", J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  27. Faraji-Oskouie, M., Norouzzadeh, A., Ansari, R. and Rouhi, H. (2019), "Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach", Appl. Math. Mech., 1-16. https://doi.org/10.1007/s10483-019-2491-9.
  28. Gheshlaghi, B. and Hasheminejad, S. M. (2012), "Vibration analysis of piezoelectric nanowires with surface and small scale effects", Current Appl. Phys., 12(4), 1096-1099. https://doi.org/10.1016/j.cap.2012.01.014.
  29. Hamed, M. A., Sadoun, A. M. and Eltaher, M. A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  30. Huang, G. Y. and Yu, S. W. (2006), "Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring", Physica Status Solidi (b), 243(4), R22-R24. https://doi.org/10.1002/pssb.200541521.
  31. Jandaghian, A. and Rahmani, O. (2016), "An analytical solution for free vibration of piezoelectric nanobeams based on a nonlocal elasticity theory", J. Mech., 32(2), 143-151. https://doi.org/10.1017/jmech.2015.53.
  32. Jandaghian, A. A. and Rahmani, O. (2015), "On the buckling behavior of piezoelectric nanobeams: An exact solution", J. Mech. Sci. Technol., 29(8), 3175-3182. https://doi.org/10.1007/s12206-015-0716-7.
  33. Juntarasaid, C., Pulngern, T. and Chucheepsakul, S. (2012), "Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity", Physica E, 46, 68-76. https://doi.org/10.1016/j.physe.2012.08.005.
  34. Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E, 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021.
  35. Kheibari, F. and Beni, Y. T. (2017), "Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model", Mater. Design, 114, 572-583. https://doi.org/10.1016/j.matdes.2016.10.041.
  36. Lazarus, A., Thomas, O. and Deu, J.-F. (2012), "Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS", Finite Elements Analysis Design, 49(1), 35-51. https://doi.org/10.1016/j.finel.2011.08.019.
  37. Liu, C. and Rajapakse, R. K. N. D. (2009), "Continuum models incorporating surface energy for static and dynamic response of nanoscale beams", IEEE Transactions on Nanotechnology, 9(4), 422-431. https://doi.org/10.1109/TNANO.2009.2034142.
  38. Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromechanics Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004.
  39. Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085.
  40. Mahinzare, M., Ranjbarpur, H. and Ghadiri, M. (2018), "Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate", Mech. Syst. Signal Processing, 100, 188-207. https://doi.org/10.1016/j.ymssp.2017.07.041.
  41. Mahmoud, F. F., Eltaher, M. A., Alshorbagy, A. E. and Meletis, E. I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z.
  42. Malikan, M. (2018), "Buckling analysis of a micro composite plate with nano coating based on the modified couple stress theory", J. Appl. Comput. Mech., 4(1), 1-15. https://dx.doi.org/10.22055/jacm.2017.21820.1117
  43. Mohamed, N., Eltaher, M.A., Mohamed, S., and Seddek, L.F., (2019), "Energy Equivalent Model in Analysis of Postbuckling of Imperfect Carbon Nanotubes Resting on Nonlinear Elastic Foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
  44. Mohamed, N., Mohamed, S. A. and Eltaher, M. A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2.
  45. Moory-Shirbani, M., Sedighi, H. M., Ouakad, H. M. and Najar, F. (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184, 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062.
  46. Murmu, T. and Adhikari, S. (2012), "Nonlocal frequency analysis of nanoscale biosensors", Sensors Actuators A, 173(1), 41-48. https://doi.org/10.1016/j.sna.2011.10.012.
  47. Ouakad, H. M. and Sedighi, H. M. (2019), "Static response and free vibration of MEMS arches assuming out-of-plane actuation pattern", J. Non-Linear Mech., 110, 44-57. https://doi.org/10.1016/j.ijnonlinmec.2018.12.011.
  48. Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  49. Rottenberg, X., Jansen, R., Cherman, V., Witvrouw, A., Tilmans, H., Zanaty, M., Khaled, A. and Abbas, M. (2013), "Meta-materials approach to sensitivity enhancement of MEMS BAW resonant sensors", Sensors, Baltimore, MD, USA. 1-4. https://doi.org/10.1109/ICSENS.2013.6688348.
  50. Sedighi, H. M. (2014a), "The influence of small scale on the pull-in behavior of nonlocal nanobridges considering surface effect, Casimir and Van der Waals attractions", J. Appl. Mech., 6(03), 1450030. https://doi.org/10.1142/S1758825114500306.
  51. Sedighi, H. M. (2014b), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. https://doi.org/10.1016/j.actaastro.2013.10.020.
  52. Shishesaz, M., Shirbani, M. M., Sedighi, H. M. and Hajnayeb, A. (2018), "Design and analytical modeling of magneto-electro-mechanical characteristics of a novel magneto-electro-elastic vibration-based energy harvesting system", J. Sound Vib., 425, 149-169. https://doi.org/10.1016/j.jsv.2018.03.030.
  53. Tanner, S. M., Gray, J. M., Rogers, C., Bertness, K. A. and Sanford, N. A. (2007), "High-Q GaN nanowire resonators and oscillators", Appl. Phys. Lett., 91(20), 203117. https://doi.org/10.1063/1.2815747.
  54. Wang, Z. L. and Song, J. (2006), "Piezoelectric nanogenerators based on zinc oxide nanowire arrays", Science, 312(5771), 242-246. https://doi.org/10.1126/science.1124005
  55. Yan, Z., and L. Y. Jiang. (2011), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotechnol., 22(24), 245703. https://doi.org/10.1088/0957-4484/22/24/245703.
  56. Zand, M. M. and Ahmadian, M. (2009), "Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects", Communications Nonlinear Sci. Numerical Simulation, 14(4), 1664-1678. https://doi.org/10.1016/j.cnsns.2008.05.009.
  57. Zarei, M., Faghani, G., Ghalami, M. and Rahimi, G. H. (2018), "Buckling and vibration analysis of tapered circular nano plate", J. Appl. Comput. Mech., 4(1), 40-54. https://dx.doi.org/10.22055/jacm.2017.22176.1127.

Cited by

  1. On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
  2. Finite element based stress and vibration analysis of axially functionally graded rotating beams vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.023
  3. Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.663