DOI QR코드

DOI QR Code

Sensitivity of GAGG based scintillation neutron detector with SiPM readout

  • Fedorov, A. (Institute for Nuclear Problems of Belarus State University) ;
  • Gurinovich, V. (ATOMTEX SPE) ;
  • Guzov, V. (ATOMTEX SPE) ;
  • Dosovitskiy, G. (NRC Kurchatov Institute) ;
  • Korzhik, M. (Institute for Nuclear Problems of Belarus State University) ;
  • Kozhemyakin, V. (ATOMTEX SPE) ;
  • Lopatik, A. (ATOMTEX SPE) ;
  • Kozlov, D. (Institute for Nuclear Problems of Belarus State University) ;
  • Mechinsky, V. (Institute for Nuclear Problems of Belarus State University) ;
  • Retivov, V. (NRC Kurchatov Institute)
  • Received : 2019.12.23
  • Accepted : 2020.03.11
  • Published : 2020.10.25

Abstract

Here we report on the first results of sensitivity evaluation of the gadolinium-aluminum-gallium- garnet (GAGG) scintillation detector with SiPM readout to fast and slow neutrons and, to the natural background and Co-60 γ-radiation as well. Data on sensitivity were obtained using certified dosimetry benches, so it can be utilized in the calculation of detection limits of neutron flux with such type of detectors. It was concluded that use of GAGG scintillator has a good prospect for neutron monitoring in different parts of nuclear research reactors and power plants.

Keywords

References

  1. P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detecting Systems, Springer, 2017.
  2. Kamada, et al., Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al) 5O12 single-crystal scintillators, Cryst. Growth Des. 11 (2011) 4484-4490. https://doi.org/10.1021/cg200694a
  3. Kamada, et al., 2inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12, J. Cryst. Growth 352 (2012) 88-90. https://doi.org/10.1016/j.jcrysgro.2011.11.085
  4. K. Kamada, M. Nikl, S. Kurosawa, A. Beitlerova, A. Nagura, Y. Shoji, J. Pejchal, Y. Ohashi, Y. Yokota, A. Yoshikawa, Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped $Gd_3Al_2Ga_3O_{12}$ scintillator, Opt. Mater. 41 (2015) 63-66. https://doi.org/10.1016/j.optmat.2014.10.008
  5. Kamada, et al., Cz grown 2-in. size Ce:Gd3(Al,Ga)5)12 single crystal; relationship between Al,Ga site occupancy and scintillation properties, Opt. Mater. 36 (2014) 1942-1945. https://doi.org/10.1016/j.optmat.2014.04.001
  6. M. Korjik, V. Alenkov, A. Borisevich, O. Buzanov, V. Dormenev, G. Dosovitskiy, A. Dosovitskiy, A. Fedorov, D. Kozlov, V. Mechinsky, R.W. Novotny, G. Tamulaitis, V. Vasiliev, H.-G. Zaunick, A.A. Vaitkevicius, Significant improvement of GAGG:Ce based scintillation detector performance with temperature decrease, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 871 (2017) 42-46. https://doi.org/10.1016/j.nima.2017.07.045
  7. M.T. Lucchini, V. Babin, P. Bohacek, S. Gundacker, K. Kamada, M. Nikl, A. Petrosyan, A. Yoshikawa, E. Auffray, Effect of $Mg^{2+}$ ions co-doping on timing performance and radiation tolerance of Cerium doped $Gd_3Al_2Ga_3O_{12}$ crystals, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 816 (2016) 176-183. https://doi.org/10.1016/j.nima.2016.02.004
  8. E. Auffray, R. Augulis, A. Fedorov, G. Dosovitskiy, L. Grigorjeva, V. Gulbinas, M. Koschan, M. Lucchini, C. Melcher, S. Nargelas, G. Tamulaitis, A. Vaitkevicius, A. Zolotarjovs, M. Korzhik, Excitation transfer engineering in Ce-doped oxide crystalline scintillators by codoping with alkali-earth ions, Phys. Status Solidi Appl. Mater. Sci. 215 (2018) 1-10.
  9. V. Alenkov, O. Buzanov, A. Dosovitsky, G. Dosovitskiy, M. Korzhik, A. Fedorov, Garnet-type Single Crystal for Scintillation Detectors and its Production Technology, 2017, 2646407RU.
  10. M. Korzhik, et al., Compact and effective detector of the fast neutrons on a base of Ce doped $Gd_3Al_2Ga_3O_{12}$ scintillation crystal, IEEE Trans. 66 (2018) 536-540, https://doi.org/10.1109/TNS.2018.2888495.
  11. M.P. Taggart, M. Nakohostin, P.J. Sellin, Investigation into the potential of GAGG:Ce as a neutron detector, Nucl. Instrum. Methods 931 (2019) 121-126. https://doi.org/10.1016/j.nima.2019.04.009
  12. P.L. Reeder, Neutron detection using GSO scintillator, Nucl. Instrum. Methods 340 (1994) 371-378. https://doi.org/10.1016/0168-9002(94)90114-7
  13. P.L. Reeder, Thin GSO scintillator for neutron detection, Nucl. Instrum. Methods 353 (1994) 134-136. https://doi.org/10.1016/0168-9002(94)91619-5
  14. J. Glodo, W.M. Higgins, E.V.D. van Loef, K.S. Shah, $GdI_3:Ce$ - a new gamma and neutron scintillator, in: IEEE Nuclear Science Symposium Conference Record, 2006.
  15. V. Alenkov, et al., Irradiation studies of a multi-doped $Gd_3Al_2Ga_3O_{12}$ scintillator, Nucl. Instrum. Methods 916 (2019) 226-229. https://doi.org/10.1016/j.nima.2018.11.101
  16. Database of prompt gamma rays from slow neutron capture for elemental analysis, p.59.https://www.iaea.org/publications/7030/database-of-promptgamma-rays-from-slow-neutron-capture-for-elemental-analysis.
  17. J.L. Grafe, F.E. McNeill, D.R. Chettle, S.H. Byun, Characteristic X ray emission in gadolinium following neutron capture as an improved method of in vivo measurement: a comparison between feasibility experiment and MonteeCarlo simulation, Nucl. Instrum. Methods Phys. Res. B 281 (2012) 21-25. https://doi.org/10.1016/j.nimb.2012.03.017
  18. http://sensl.com/downloads/ds/UM-ArrayTSV.pdf.
  19. State System for Ensuring the Uniformity of Measurements. Neutron Radiometers. Methods and Means of Verification. GOST 8.355-79 (in Russian).
  20. Portable Radiometric and Dosimetric Instruments. General Technical Requirements and Test Methods. GOST 28271-89 (in Russian).
  21. https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html.

Cited by

  1. GAGG:Ce composite scintillator for X-ray imaging vol.109, 2020, https://doi.org/10.1016/j.optmat.2020.110305
  2. Characterization of GAGG Doped with Extremely Low Levels of Chromium and Exhibiting Exceptional Intensity of Emission in NIR Region vol.11, pp.6, 2021, https://doi.org/10.3390/cryst11060673
  3. Gd-containing scintillators for thermal neutron detection via graph-based particle discrimination vol.92, pp.10, 2020, https://doi.org/10.1063/5.0061426