DOI QR코드

DOI QR Code

Water cost analysis of different membrane distillation process configurations for brackish water desalination

  • Saleh, Jehad M (Chemical Engineering Department, King Saud University) ;
  • Ali, Emad M. (Chemical Engineering Department, King Saud University) ;
  • Orfi, Jamel A (Mechanical Engineering department, King Saud University) ;
  • Najib, Abdullah M (Mechanical Engineering department, King Saud University)
  • 투고 : 2018.05.11
  • 심사 : 2019.12.10
  • 발행 : 2020.09.25

초록

Membrane distillation (MD) is a process used for water desalination. However, its commercialization is still hindered by its increased specific cost of production. In this work, several process configurations comprising Direct Contact and Permeate Gap distillation membrane units (PGMD/DCMD) were investigated to maximize the production rate and consequently reduce the specific water cost. The analysis was based on a cost model and an experimentally validated MD model. It was revealed that the best achievable water cost was approximately 5.1 $/㎥ with a production rate of 8000 ㎥/y. This cost can be further decreased to approximately 2 $/㎥ only if the heating and cooling energies are free of cost. Therefore, it is necessary to decrease the MD capital investment to produce pure water at economical prices.

키워드

과제정보

The project was supported by King Saud University, Deanship of Scientific Research, Research Group Grant 1438-093.

참고문헌

  1. Abdelhameed, R.M., el-deib, H.R., El-Dars, F.M.S.E., Ahmed, H. B., Emam, H.E., (2018), "Applicable Strategy for Removing Liquid Fuel Nitrogenated Contaminants Using MIL-53-$NH_2@Natural$ Fabric Composites", Indsutrial Eng. Chem. Res., 57(44), 15054-15065. https://doi.org/10.1021/acs.iecr.8b03936.
  2. Ali, E. and Orfi, J. (2018), "An experimentally calibrated model for heat and mass transfer in direct contact membrane distillation", Desalination Water Treat., 116, 1-18. https://doi.org/10.5004/dwt.2018.22471
  3. Ali, E. Orfi, J. and Najib, A. (2018), "Assessing the thermal efficiency of brackish water desalination by membrane distillation using exergy analysis", Arabian J. Sci. Eng., 43, 2413-2424. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.051.
  4. Ali, A., Quist-Jensen, C.A., Macedonio, F., Drioli, E. (2016), "Optimization of module length for continuous direct contact membrane distillation process", Chem. Eng. Process, 110, 188- 200. https://doi.org/10.1016/j.cep.2016.10.014.
  5. Alklaibi, A.M. and Lior, N. (2004), "Membrane-distillation desalination: status and potential", Desalination, 171, 111-131. https://doi.org/10.1016/j.desal.2004.03.024.
  6. Banat, F., Jawied, N., Rommel, M., Koschikowski, J., and Wieghaus, M., (2007), "Desalination by a compact SMADES autonomous solar-powered membrane distillation unit", Desalination, 217, 29-37. https://doi.org/10.1016/j.desal.2006.11.028.
  7. Bhausaheb, L. P., Samir K.D., Prashant, V.T. (2017), "Multi- effect air gap membrane distillation process for pesticide wastewater treatment", Membr. Water Treat., 8(6), 539-541. https://doi.org/10.12989/mwt.2017.8.6.529.
  8. Camacho, L. M. Dumee, L. Zhang, J. Li, J.D. Duke, M. Gomez, J. and Gray, S. (2013), "Advances in membrane distillation for water desalination and purification applications", Water, 5, 94-196. https://doi.org/10.3390/w5010094.
  9. Chen, T-C and Ho, C-D (2010), "Mediate assisted solar direct contact membrane distillation in saline water desalination", J. Membr. Sci. 358, 122-130. https://doi.org/10.1016/j.memsci.2010.04.037.
  10. Choi, Y.J. Lee, S. Koo, J. and Kim, S.H. (2016), "Evaluation of economic feasibility of reverse osmosis and membrane distillation hybrid system for desalination", Desalination Water Treat., 57, 24662-24673. https://doi.org/10.1080/19443994.2016.1152648.
  11. Duong, H. C., Cooper, P., Nelemans, B., Tzahi Y. C., Nghiem L.D., (2015), "Optimising Thermal Efficiency of Direct Contact Membrane Distillation by Brine Recycling for Small-scale Seawater Desalination", Desalination, 374, 1-9. https://doi.org/10.1016/j.desal.2015.07.009.
  12. El-Dessouki, H. and Ettouney, H. (2002), Fundamental of Salt Water Desalination, Elsevier Science BV., Amsterdam, the Netherlands.
  13. Essalhi, M., Khayet, M. (2015), "Chapter Three - Membrane Distillation (MD)", Progress in Filtration and Separation, Academic Press, 61-99.
  14. Fard, K., Manawi, Y.M. Rhadfi, T. Mahmoud, K.A. Khraisheh and Benyahia, F. (2015), "Synoptic analysis of direct contact membrane distillation performance in Qatar: A case study", Desalination, 360, 97-107. https://doi.org/10.1016/j.desal.2015.01.016.
  15. Guillen, E. Blanco, J. Alarcon, D. Zaragoza, G. Palenzuela, P. and Ibarra, M. (2011), "Comparative evaluation of two membrane distillation modules", Desalination Water Treat., 31, 226-234. https://doi.org/10.5004/dwt.2011.2395.
  16. He, F. Gilron, J. Sirkar, K. (2013), "High water recovery in direct contact membrane distillation using a series of cascades", Desalination, 323, 48-54. https://doi.org/10.1016/j.desal.2012.08.006.
  17. Khalifa, E., Alawad, S.M. and Antar, M.A. (2017), "Parallel and series multistage air gap membrane distillation", Desalination, 417, 69-76. https://doi.org/10.1016/j.desal.2017.05.003.
  18. Khayet, M. (2010), "Desalination by Membrane Distillation", Encyclopedia of Life Support Science (EOLSS), Water and Wastewater Treatment Technologies, EOLSS Publisher, Oxford, United Kingdom.
  19. Kotb, H., Amer E.H., Ibrahim K.A. (2016), "On the optimization of RO (Reverse Osmosis), system arrangements and their operating conditions", Energy, 103, 127-150. https://doi.org/10.1016/j.energy.2016.02.162.
  20. Lawal, D.J. and Khalifa, A. (2014), "Flux prediction in direct contact membrane distillation", Int. J. Material, Mechanics and Manufacture, 2(4), 302-308. https://doi.org/10.7763/IJMMM.2014.V2.147.
  21. Lee, J.G., Kim, W.S. and Choi, J.S. Ghaffour, N. and Kim, Y.D. (2016), "A novel multi-stage direct contact membrane distillation module: Design, experimental and theoretical approaches", Water Res., 107, 47-56. https://doi.org/10.1016/j.watres.2016.10.059.
  22. Lee, J-G. Alsaadi, A.S. Karam, A.M. Francis, L. Soukane, S. and Ghaffour, N. (2017), "Total water production capacity inversion phenomenon in multi-stage direct contact membrane distillation: A theoretical study", J. Membr. Sci., 544, 126-134. https://doi.org/10.1016/j.memsci.2017.09.020.
  23. Lienhard, J.H., Antar, M.A., Smith, A., Blanco, J. and Zaragoza, G. (2012), "Solar desalination", Annual Rev. Heat Transfer, 15, Article 4659.
  24. Lokare, O.R. Tavakkoli, S. Khanna, V. and Vidic, R.D. (20180 "Importance of feed recirculation for the overall energy consumption in membrane distillation systems", Desalination, 428, 250-254. https://doi.org/10.1016/j.desal.2017.11.037.
  25. Matsuura, T. and Khayet, M. (2011), Membrane Distillation: Principles and Applications, Elsevier, Amsterdam, The Netherlands.
  26. Omar, A. Nashed, A. Taylor, R. (2018), "Single Vs Multi-Stage Vacuum Membrane Distillation: An Energetic Analysis", 11th Australasian Heat and Mass Transfer Conference, AHMTC11 9-10th July 2018, RMIT University, Melbourne, Australia.
  27. Orfi, J. Najib, A., Ali, E., Ajbar, A., AlMatrafi, M., Boumaaza, M. and K. Alhumaizi, K. (2017), "Membrane distillation and reverse osmosis-based desalination driven by geothermal energy sources", Desalination Water Treat., 76, 40-52. http://dx.doi.org/10.5004/dwt.2017.11378.
  28. Pangarkar B.L., and S.K. Deshmukh, S.K., (2015), "Theoretical and experimental analysis of multi-effect air gap membrane distillation process (ME-AGMD)", J. Environ. Chem. Eng., 3(3), 2127-2135. https://doi.org/10.1016/j.jece.2015.07.017.
  29. Qtaishat, M.R. and Banat, F. (2013), "Desalination by solar powered membrane distillation systems", Desalination, 308,186-197. https://doi.org/10.1016/j.desal.2012.01.021.
  30. Safavi, M. and Mohammadi, T. (2009), "High-salinity water desalination using VMD", Chem. Eng. J., 149, 191-195. https://doi.org/10.1016/j.cej.2008.10.021.
  31. Summers, E. Arafat, H. and Lienhard, J. (2012), "Energy efficiency comparison of single-stage membrane distillation (MD), desalination cycles in different configurations", Desalination, 290, 54-66. https://doi.org/10.1016/j.desal.2012.01.004.
  32. Swaminathan, J., Chung, H.W. Warsinger, D.M. and Lienhard J.H, (2018), "Energy efficiency of membrane distillation up to high salinity: evaluating critical system size and optimal membrane thickness", Appl. Energy, 211, 715-734. https://doi.org/10.1016/j.apenergy.2017.11.043.
  33. Thomas, N. Mavukkandy, M.O. Loutatidou, S. and Arafat, H.A. (2017), "Membrane distillation research and implementation: lessons from the past five decades", Sep. Purif. Technol., 189, 108-127. https://doi.org/10.1016/j.seppur.2017.07.069.
  34. Triki, Z. Bouaziz M. and Boumaza, M. (2017), "Performance and cost evaluation of an autonomous solar vacuum membrane distillation desalination plant", Desalination Water Treat., 73, 107-120. http://dx.doi.org/10.5004/dwt.2017.20596.
  35. Zhang, Y. Peng, Y. Ji, S. Qi, J. and Wang S. (2017), "Numerical modeling and economic evaluation of two multi-effect vacuum membrane distillation (ME-VMD), processes", Desalination, 419, 39-48. https://doi.org/10.1016/j.desal.2017.05.032.
  36. Zhang, J. (2011), "Theoretical and Experimental Investigation of Membrane Distillation", PhD Dissertation, Victoria University, Australia.
  37. Winter, D., Koschikowski, J., Wieghaus, M. (2011), "Desalination using membrane distillation: Experimental studies on full scale spiral wound modules", J. Membr. Sci., 375, 1-2, 104-112. https://doi.org/10.1016/j.memsci.2011.03.030.