• 제목/요약/키워드: water desalination

검색결과 333건 처리시간 0.026초

국내 해수담수화 플랜트 적용 활성화 방안 연구 (The Research on Activation Plan for Seawater Desalination Plant Application in Korea)

  • 손진식;양정석;박진서
    • 상하수도학회지
    • /
    • 제23권2호
    • /
    • pp.251-255
    • /
    • 2009
  • Foreign and domestic seawater desalination plant market investigation was performed to analyze the worldwide trend of seawater desalination plant market and to establish the activation plan for seawater desalination plant application. Water demand and seawater desalination related laws and regulations were investigated and analyzed for the activation plan. RO type and large scale plants are popular nowadays however there are only small plants in island region in Korea. There will be about $1 million\;m^3/day$ deficit in 2015 according to the water demand forecasting from Ministry of Environment and Ministry of Land, Transportation, and Maritime Affairs in Korea. Therefore, it is necessary to activate the domestic application of seawater desalination plant to secure stable water resources. To activate the domestic application of seawater desalination plant, first, we need to establish regulations, support system in the water service law for seawater desalination plant. Second, related Ministry should increase the support for the operation and management of seawater desalination plant and suggest the construction of seawater desalination plant for water resources security near seaside region.

미래 그린 해수담수화 기술 (Future green seawater desalination technologies)

  • 김정빈;홍승관
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.403-410
    • /
    • 2020
  • The difficulty of securing freshwater sources is increasing with global climate change. On the other hand, seawater is less affected by climate change and regarded as a stable water source. For utilizing seawater as freshwater, seawater desalination technologies should be employed to reduce the concentration of salts. However, current desalination technologies might accelerate climate change and create problems for the ecosystem. The desalination technologies consume higher energy than conventional water treatment technologies, increase carbon footprint with high electricity use, and discharge high salinity of concentrate to the ocean. Thus, it is critical to developing green desalination technologies for sustainable desalination in the era of climate change. The energy consumption of desalination can be lowered by minimizing pump irreversibility, reducing feed salinity, and harvesting osmotic energy. Also, the carbon footprint can be reduced by employing renewable energy sources to the desalination system. Furthermore, the volume of concentrate discharge can be minimized by recovering valuable minerals from high-salinity concentrate. The future green seawater desalination can be achieved by the advancement of desalination technologies, the employment of renewable energy, and the utilization of concentrate.

역삼투법에 의한 해수의 담수화에 관한 연구 (Desalination of Seawater by Reverse Osmosis)

  • 이선주
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.155-164
    • /
    • 2004
  • Many countries, including Korea, suffer from a shortage of freshwater. With increases in population and the quality of life, along with large-scale expansion in industrial and agricultural activities, more freshwater is needed. Available resources, Including ground water, are limited, and desalination presents the opportunity for a new unlimited source of freshwater from the sea. The objectives of this study were to test membrane performance in seawater desalination and to examine the quality of water produced. bath well and sea water were used as water sources. Typically used membrane for seawater desalination and high rejection seawater desalination membrane are maintained at almost same recovery rate and permeate flux, while the conductivity was lower in the operation of typically used seawater membrane. The treated water quality using two types of membranes is satisfied with the Korea drinking water quality standards.

비수용성 용매를 이용한 탈염화 가능한가?: 적용 가능한 용매선정 기법 제안 (Can Non-aqueous Solvent Desalinate?: Suggestion of the Screening Protocol for Selection of Potential Solvents)

  • 최오경;서준호;김경수;김두일;이재우
    • 한국물환경학회지
    • /
    • 제36권1호
    • /
    • pp.48-54
    • /
    • 2020
  • This paper presents a screening protocol for the selection of solvents available for the solvent extraction desalination process. The desalination solvents hypothetically and theoretically require the capability of (1) Forming hydrogen bonds with water, (2) Absorbing some water molecules into its non-polar solvent layer, (3) Changing solubility for water-solvent separation, and (4) Rejecting salt ions during absorption. Similar to carboxylic acids, amine solvents are solvent chemicals applicable for desalination. The key parameter for selecting the potential solvent was the octanol-water partitioning coefficient (Kow) of which preferable value for desalination was in the range of 1-3. Six of the 30 amine solvents can absorb water and have a variable, i.e., temperature swing solubility with water molecule for water-solvent separation. Also, the hydrogen bonding interaction between solvent and water must be stronger than the ion-dipole interaction between water and salt, which means that the salt ions must be broken from the water and only water molecules absorbed for the desalination. In the final step, three solvents were selected as desalination solvents to remove salt ions and recover water. The water recovery of these three solvents were 15.4 %, 2.8 %, 10.5 %, and salt rejection were 76 %, 98 %, 95 %, respectively. This study suggests a new screening protocol comprising the theoretical and experimental approaches for the selection of solvents for the desalination method which is a new and challenges the desalination process in the future.

Effect of Untreated Water Flow Rate at Certain Temperature on the Discharge of Treated Water

  • Ullah, Muhammad Arshad;Aslam, Muhammad;Babar, Raheel
    • 식품보건융합연구
    • /
    • 제5권6호
    • /
    • pp.5-9
    • /
    • 2019
  • Desalination requires large energy. This experiment deals to desalinate brackish water through solar panels. The discharge from desalination plants is almost entirely water, and .01 percent is salt. Desalination is a process that extracts minerals from saline water. Solar-powered desalination technologies can be used to treat non-traditional water sources to increase water supplies in rural, arid areas. Water scarceness is a rising dilemma for large regions of the world. Access to safe, fresh and pure clean drinking water is one of the most important and prime troubles in different parts of the world. Among many of water cleansing technologies solar desalination/distillation/purification is one of the most sustainable and striking method engaged to congregate the supply of clean and pure drinkable water in remote areas at a very sound cost. Six types of dripper having discharge 3 - 8 lh-1 were installed one by one and measured discharge and volume of clean water indicated that at 6 lh-1 untreated water discharge have maximum evaporation and volume of clean water was 19.2 lh-1 at same temperature and radiations. Now strategy was developed that when increased the temperature the intake discharge of untreated water must be increased and salt drained water two times more than treated water.

계량서지적 분석을 활용한 핵심 담수화 기술의 연구 동향 (Bibliometric analysis of twenty-year research trend in desalination technologies during 2000-2020)

  • 이경훈;김혜원;부찬희;백영빈;곽노균;김춘수;정성필
    • 상하수도학회지
    • /
    • 제35권1호
    • /
    • pp.39-52
    • /
    • 2021
  • The global water shortage is getting more attention by global climate change. And water demand rapidly increases due to industrialization and population growth. Desalination technology is being expected as an alternative water supply method. Desalination technology requires low energy or maintenance costs, making it a competible next generation technology, with examples such as forward osmosis (FO), membrane distillation (MD), capacitive deionization (CDI), and electrodialysis (ED) to compete with reverse osmosis (RO). In order to identify recent research trends in desalination technologies (FO, MD, RO, CDI, and ED) between 2000-2020, a bibliometric analysis was conducted in the current study. The number of published papers in desalination technology have increased in Desalination and Journal of Membrane Science mainly. Moreover, it was found that FO, MD, RO, CDI, and ED technologies have been applied in various research areas including electrochemical, food processing and carbon-based material synthesis. Recent research topics according to the desalination technologies were also identified.

아시아 주요국의 해수담수화 플랜트 시장전망과 진출방안 (Prospect and strategies of seawater desalination plant in Asia major countries)

  • 손진식;한지희;김석화;신동우;임재한
    • 상하수도학회지
    • /
    • 제24권2호
    • /
    • pp.157-164
    • /
    • 2010
  • Seawater desalination has vest interest in terms of ultimate water resources for the countries suffering lack of water supply. Water demand is steadily increasing due to the population growth and industrialization in Asia. The objectives of this study are to prospect the desalination market in Asia countries including China, India and Singapore, and to propose possible strategies of getting through Asia water market. Water supply in China is increasing up to $5,322,060m^3$/d in 2015. Northeast coastal areas such as Tianjin, Shandong, Hubei, and Liaoning are expected rapid increase for water demand. The investment of water supply in India would be 1.74 billion dollars during 2006 to 2015. Chennai, Kutch, and Pondicherry have possibility in introducing seawater desalination plants. Singapore is focusing on water reuse, and operating three NEWater plants (water reuse plants). BOT with total solution providing financing, construction, operation etc. is an adequate strategy to getting through China water market, while desalination plant project connecting with power plant is desirable in India. The cooperative system with Korea and Singapore creates synergy effect regarding planning and operating experience of Singapore and EPC ability of Korea.

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

EXPERIMENT AND SIMULATION OF A WIND-DRIVEN REVERSE OSMOSIS DESALINATION SYSTEM

  • Park, Sang-Jin;Clark C.K. Liu
    • Water Engineering Research
    • /
    • 제4권1호
    • /
    • pp.1-17
    • /
    • 2003
  • A mathematical model was developed to simulate the performance of a prototype wind-powered reverse osmosis desalination system. The model consists of two sub-models operated in a series. The first sub-model is the wind-energy conversion sub-model, which has wind energy and feed water as its input and pressurized feed water as its output. The second sub-model is a reverse osmosis (RO) process sub-model, with pressurized feed water as its input and the flow and salinity of the product water or permeate as its output. Model coefficients were determined based on field experiments of a prototype wind powered RO desalination system of the University of Hawaii, from June to December 2001. The mathematical model developed by this study predicts the performance of wind-powered RO desalination systems under different design conditions. The system optimization is achieved using a linear programming approach. Based on the results of system optimization, a design guide is prepared, which can be used by both manufacturer and end-user of the wind-driven reverse osmosis system.

  • PDF

SWRO-PRO 복합해수담수화 기술의 현재와 미래 (The present and future of SWRO-PRO hybrid desalination technology development)

  • 정경미;여인호;이원일;오영기;박태신;박용균
    • 상하수도학회지
    • /
    • 제30권4호
    • /
    • pp.401-408
    • /
    • 2016
  • Desalination is getting more attention as an alternative to solve a global water shortage problem in the future. Especially, a desalination technology is being expected as a new growth engine of Korea's overseas plant business besides one of the solutions of domestic water shortage problem. In the past, a thermal evaporation technology was a predominant method in desalination market, but more than 75% of the current market is hold by a membrane-based reverse osmosis technology because of its lower energy consumption rate for desalination. In the future, it is expected to have more energy efficient desalination process. Accordingly, various processes are being developed to further enhance the desalination energy efficiency. One of the promising technologies is a desalination process combined with Pressure Retarded Osmosis (PRO) process. The PRO technology is able to generate energy by using osmotic pressure of seawater or desalination brine. And the other benefits are that it has no emission of $CO_2$ and the limited impact of external environmental factors. However, it is not commercialized yet because a high-performance PRO membrane and module, and a PRO system optimization technology is not sufficiently developed. In this paper, the recent research direction and progress of the SWRO-PRO hybrid desalination was discussed regarding a PRO membrane and module, an energy recovery system, pre-treatment and system optimization technologies, and so on.