DOI QR코드

DOI QR Code

경북 지역 먹는 물의 은 검출 특성

Silver Contamination in Drinking Water of Gyeongbuk Area in Korea

  • 이해근 (경상북도 보건환경연구원) ;
  • 김정진 (안동대학교 지구환경과학과) ;
  • 김영훈 (안동대학교 환경공학과)
  • Lee, Hea Geun (Gyeong Sang Buk-Do Government Public Institute of Health and Environment) ;
  • Kim, Jeong Jin (Department of Environmental Earth and Science, Andong National University) ;
  • Kim, Young Hun (Department of Environmental Engineering, Andong National University)
  • 투고 : 2020.06.16
  • 심사 : 2020.09.24
  • 발행 : 2020.09.30

초록

나노물질에 대한 연구와 산업화가 급격히 진행되면서 수환경으로 유출되는 나노물질의 양도 점차 많아지고 있다. 특히 은나노물질의 경우 은의 항균성으로 인하여 다양한 분야에서 사용되고 있으며 환경으로 유출되어 입자상태와 용해된 상태로 존재할 수 있다. 은나노물질과 은이온은 생태환경에 악영향을 줄 수 있으며 미국에서는 2차 먹는물 규제 항목(secondary drinking water standards)으로 정하고 있으며 규제농도는 0.1 mg/L로 정하여 관리하고 있다. 본 연구에서는 경북지역의 지하수와 소규모 먹는 물 공급시설을 대상으로 은의 농도를 측정하였으며 오염 정도를 미국 EPA 기준과 비교하고 시료를 채취한 지역의 특성, 물의 사용 목적 등을 고려하여 분석하였다. 총 293개의 시료 중 EPA의 secondary drinking water standards를 초과한 시료는 2개이며 비율로 0.6 7%이다. 검출률은 마을 상수도와 소규모 급수시설에서 상대적으로 높으며 농도 기준으로는 지하수에서 상대적으로 높은 농도를 보여 인위적 오염원과 지질적 기원이 동시에 작용한 것으로 판단되었다.

As studies and developments of nano-material increase, the release of the nano-sized material to water environment increase. Especially, silver nanoparticles have been found as dissolved and particulate state since nano-silver particle have been intensively used in industrial and our living environment due to the anti-bacterial effect of the nano-particles. The silver nano-particles and silver ion gives adverse effect on ecology and US-EPA set a secondary drinking water standards as 0.1 mg/L. Current study focused on the analysis of silver in groundwater, small scale water supply systems in Gyeongbook area. The results have been compared with the secondary drinking water standards and discussed at the point of characteristics of the local area and purpose of use of the water sample. Among the total of 298 samples, 2 samples exceed the secondary drinking water standards of EPA, 0.64% rate. Community drinking water and simplified water service showed relatively high detection rate and groundwater gave relatively higher concentration of silver indicating anthropogenic source and natural source could contribute simultaneously on groundwater.

키워드

참고문헌

  1. Dobias, J. and Bernier-Latmani, R., 2013, Silver Release from Silver Nanoparticles in Natural Waters, Environ. Sci. Technol., 47, 4140-4146. https://doi.org/10.1021/es304023p
  2. Dong, B., Liu G., Zhou, J., Wang, J., Jin R., Zhang, Y., 2020, Effects of reduced graphene oxide on humic acidmediated transformation and environmental risks of silver ions, Journal of Hazardous Materials, 385, 203-212.
  3. Hong, N.H., Jung, Y.J. Park, J.W., 2016, Ecotoxicity Assessment of Silver Nanomaterials with Different Physicochemical Characteristics in Diverse Aquatic Organisms, Korean J. Environ. Biol. 34, 183-192. https://doi.org/10.11626/KJEB.2016.34.3.183
  4. Hu, G., and Cao, J., 2019, Occurrence and significance of natural ore-related Ag nanoparticles in groundwater systems, Chemical Geology, 515, 9-21. https://doi.org/10.1016/j.chemgeo.2019.03.036
  5. Jeong, E.M., Chae, S.R., Shin, H.S., 2010, Effects of Silver Nanoparticles on Biological Wastewater Treatment Processes, Korean Society on Water Environment, 459-460.
  6. Jimenez-Lamana, J., and Slaveykova, V.I., 2016, Silver nanoparticle behaviour in lake water depends on their surface coating, Science of the Total Environment, 573, 946-953. https://doi.org/10.1016/j.scitotenv.2016.08.181
  7. Jung, Y.J., Kim, J.Y., Yang, S.Y., Lee, B.G., Kim, S.D., 2012, Bioaccumulation of Silver Nanoparticles in Oryzias Latipes through Aqueous Exposure, Korean Society of Environmental Health and Toxicology, 2012, 10.
  8. Lee, D.H., Kim, H.C., Choi, J.W., Choi, I.H., Maeng, S.K., 2015, Effect of silver nanoparticles on the performance of riverbank filtration:Column study, Journal of Korean Society of Water and Wastewater. 29, 77-88. https://doi.org/10.11001/jksww.2015.29.1.077
  9. Li, P., Su1, M., Wang, X., Zou1, X., Sun, X., Shi, J., Zhang, H., 2012, Environmental fate and behavior of silver nanoparticles in natural estuarine systems, 88, 248-259.
  10. Li, X., and Lenhart, J., 2012, Aggregation and Dissolution of Silver Nanoparticles in Natural Surface Water, Environ. Sci. Technol, 46, 5378-5386. https://doi.org/10.1021/es204531y
  11. Myagkaya, I.N., Lazareva, E.V., Gustaytis, M.A., Zhmodika, S.M., 2016, Gold and silver in a system of sulfide tailings. Part 1: Migration in water flow, Journal of Geochemical Exploration, 160, 16-30. https://doi.org/10.1016/j.gexplo.2015.10.004
  12. Neukum, C., Braun, A. and Azzam, R., 2014, Transport of engineered silver (Ag) nanoparticles through partially fractured sandstones, Journal of Contaminant Hydrology, 164, 181-192. https://doi.org/10.1016/j.jconhyd.2014.05.012
  13. Odzak, N., Kistler, D. and Sigg, L., 2017, Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments, Environmental Pollution, 226, 1-11. https://doi.org/10.1016/j.envpol.2017.04.006
  14. Ouyang, S., Hu, X., Zhou, Q., Li, X., Miao, X., Zhou, R., 2018, Nanocolloids in Natural Water: Isolation, Characterization, and Toxicity, Environ. Sci. Technol., 52, 4850-4860. https://doi.org/10.1021/acs.est.7b05364
  15. Tan, Z., Guo, X., Yin, Y., Wang, B., Bai, Q., Li, X., Liu J. and Jiang, G., 2019, Freezing Facilitates Formation of Silver Nanoparticles under Natural and Simulated Sunlight Conditions, Environ. Sci. Technol, 53, 13802-13811. https://doi.org/10.1021/acs.est.9b05926
  16. Tosco, T. and Sethi, R., 2018, Human health risk assessment for nanoparticle-contaminated aquifer systems, Environmental Pollution, 239, 242-252. https://doi.org/10.1016/j.envpol.2018.03.041
  17. Tugulea, A.M., Berube D., Giddings, M., Lemieux, F., Hnatiw, J., Priem, J., Avramescu, M.L., 2014, Nano-silver in drinking water and drinking water sources:stability and influences on disinfection by-product formation, Environ Sci Pollut Res, 21, 11823-11831. https://doi.org/10.1007/s11356-014-2508-5
  18. Xiao, J., Wang, L., Denga, L, and Jin, Z., 2019, Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau, Science of the Total Environment, 650, 2004-2012. https://doi.org/10.1016/j.scitotenv.2018.09.322