DOI QR코드

DOI QR Code

Status of Molecular Biotechnology Research Based on Tissue Culture of Soybean

콩 조직배양 기술에 기반한 생명공학 연구 동향

  • Seo, Mi-Suk (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Cho, Chuloh (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Choi, Man-Soo (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Chun, JaeBuhm (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Jin, Mina (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Kim, Dool-Yi (Crop Foundation Research Division, National Institute of Crop Science)
  • 서미숙 (국립식량과학원 작물기초기반과) ;
  • 조철오 (국립식량과학원 작물기초기반과) ;
  • 최만수 (국립식량과학원 작물기초기반과) ;
  • 전재범 (국립식량과학원 작물기초기반과) ;
  • 진민아 (국립식량과학원 작물기초기반과) ;
  • 김둘이 (국립식량과학원 작물기초기반과)
  • Received : 2020.06.04
  • Accepted : 2020.09.28
  • Published : 2020.10.01

Abstract

Soybean (Glycine max (L.) Merrill) is one of the most important crops of the world. With the completion of the soybean genome sequence, the Korean soybean core collection consisted of 430 accessions with genetic and phenotypic diversity was constructed in recent year. The availability of genome sequences and core collection will result in the crop improvement by molecular breeding using the various accessions and genome editing approaches. Efficient tissue culture techniques, such as haploid production, protoplast culture and plant regeneration from various organs are essential for the successful molecular biological approach and crop improvement. However, soybean is still considered to be recalcitrant in tissue culture because of the low frequency of regeneration and limitation of available responsive cultivars. In this study, we discuss the recent studies of tissue culture technology and methodology for efficient tissue culture to genetic improvement and application of molecular biotechnology in soybean.

콩은 전세계적으로 재배되는 중요한 작물 중에 하나로 최근, 표준유전체 해독과 함께 유전적, 표현형적으로 다양성을 가진 한국핵심집단이 구축됨에 따라 유전체 기반 분자 육종 연구, 유전자 교정 기술을 활용한 새로운 육종 소재 개발 연구가 가속화될 것으로 예상된다. 유전체 정보 기반 작물의 분자 육종 및 생명공학 연구를 통한 성공적인 작물의 개량을 위해서는 식물의 효율적인 조직배양 기술이 수반되어야 할 것이다. 그러나 반수체 생산, 원형질체 배양 및 형질전환 기술과 같은 콩의 조직배양 효율은 아직까지 높지 않고 일부 계통에 한정되어 이루어지고 있다. 본 논문에서는 콩의 분자육종 및 생명공학 기술의 적용을 위하여 다양한 콩 조직배양 기술에 관한 연구 동향을 분석하고 조직배양 효율에 영향을 미치는 요인들에 대한 정보를 제공하고자 하였다.

Keywords

References

  1. Aragao, F.J.L., L. Sarokin, G.R. Vianna and E.L. Rech. 2000. Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merrill] plants at a high frequency. Theor. Appl. Genet. 101:1-6. https://doi.org/10.1007/s001220051441
  2. Bajaj, Y.P.S., S.K. Mahajan and K.S. Labana. 1986. Interspecific hybridization of Brassica napus and B. juncea through ovary, ovule and embryo culture. Euphytica 35:103-109. https://doi.org/10.1007/BF00028547
  3. Bao, A., H. Chen, L. Chen, S. Chen, Q. Hao, W. Guo, D. Qiu, Z, Shan, Z. Yang, S. Yuan, C. Zhang, X. Zhang, B. Liu, F. Komg, Xia Li, X. Zhou, L.S.P. Tran and D. Cao. 2019. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 19:131. https://doi.org/10.1186/s12870-019-1746-6
  4. Barwale, U.B., M.M. Meyer and J.M. Widholm. 1986. Screening of Glycine max and Glycine soja genotypes for multiple shoot formation at the cotyledonary node. Theor. Appl. Genet. 72:423-428. https://doi.org/10.1007/BF00288582
  5. Bezouw, R., J.J.B. Keurentjes, J. Harbinson and M. Aarts. 2019. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant J. 97(1): 112-133. https://doi.org/10.1111/tpj.14190
  6. Blanca, J., C. Esteras, P. Ziarsolo, D. Perez, V.F.N. Pedrosa, C. Collado, R.R.D. Pablos, A. Ballester, C. Roig, J. Cañizares and B. Pico. 2012. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280. https://doi.org/10.1186/1471-2164-13-280
  7. Bolibok, H., A. Gruszczynska, A. Hromada-Judycka, and M. Rakoczy-Trojanowska. 2007. The identification of QTLs associated with the in vitro response of rye (Secale cereal L.). Cell Mol. Biol. Lett. 12:523-535.
  8. Buter, B., S.M. Pescitelli, K. Berger, J.E. Schmid and P. Stamp. 1993. Autoclaved and filter sterilized liquid media in maize anther culture: significance of activated charocoal. Plant Cell Rep. 13:79-82. https://doi.org/10.1007/BF00235294
  9. Cai, Y., L. Chen, X. Liu, C. Guo, S., Sun, C. Wu, B. Jiang, T. Han and W. Hou. 2018. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotech. J. 16:176-185. https://doi.org/10.1111/pbi.12758
  10. Chen, L.P., M.F. Zhang, Q.B. Xiao, J.G. Wu and Y. Hirata. 2004. Plant regeneration from hypocotyl protoplasts of red cabbage (Brassica oleracea) by using nurse cultures. Plant Cell Tissue Org. Cult. 77:133-8. https://doi.org/10.1023/B:TICU.0000016811.29125.18
  11. Chen, R., K. Matsui, M. Ogawa, M. Oe, M. Ochiai, H. Kawashima, E. Sakuradani, S. Shimizu, M. Ishimoto, M. Hayashi, M. Yoshikatsu and T. Yoshikazu. 2006. Expression of ${\Delta}6$, ${\Delta}5$ desaturase and GLELO elongase genes from Mortierella alpina for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Sci. 170:399-406. https://doi.org/10.1016/j.plantsci.2005.09.006
  12. Chiera, J.M., J.J. Finer and E.A. Grabau. 2004. Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol. Biol. 56:895-904. https://doi.org/10.1007/s11103-004-5293-6
  13. Chun, J.B., M. Jin, N. Jeong, C. Cho, M.S. Seo, M.S. Choi, D.Y. Kim, H.B. Sohn and Y.H. Kim. 2019. Genetic identification and phylogenic analysis of new varieties and 149 Korean cultivars using 27 InDel markers selected from dense variation blocks in soybean (Glycine max (L.) Merrill). Korean J. Plant Res. 32(5):519-542 (in Korean).
  14. Cistue, L., M. Soriano, A.M. Castillo, M.P. Valles, J.M. Sanz and B. Echavarri. 2006. Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep. 25:257-264. https://doi.org/10.1007/s00299-005-0047-8
  15. Collonnier, U., I. Fock, M.C. Daunay, A. Servaes, F. Vedel, S. Siljak-Yakovlev, V. Souvannavong and D. Sihachakr. 2003. Somatic hybrids between Solanum melongena and S. sisymbrifolium, as a useful source of resistance against bacterial and fungal wilts. Plant Sci. 164:849-61. https://doi.org/10.1016/S0168-9452(03)00075-X
  16. Cunha, N.B., A.M. Murad, T.M. Cipriano, A.C.G. Araujo, F.J.L. Aragão, A. Leite, G.R. Vianna, T.R. McPhee, G.H.M.F. Souza, M.J. Waters and E.L. Rech. 2011. Expression of functional recombinant human growth hormone in transgenic soybean seeds. Transgenic Res. 20:811-826. https://doi.org/10.1007/s11248-010-9460-z
  17. Cunha, W.G., M.L.P. Tinoco, H.L. Pancoti, R.E. Ribeiro and F.J.L. Aragao. 2010. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylate gene. Plant Pathol. 59:654-660. https://doi.org/10.1111/j.1365-3059.2010.02279.x
  18. Dan, Y. and N.A. Reighceri. 1998. Organogenic regeneration of soybean from hypocotyl explants. In Vitro Cell Dev. Biol. Plant 34:14-21. https://doi.org/10.1007/BF02823117
  19. Dang, W. and Z. Wei. 2007. An optimized Agrobacteriummediated transformation for soybean for expression of binary insect resistance genes. Plant Sci. 173:381-389. https://doi.org/10.1016/j.plantsci.2007.06.010
  20. Dhir, S.K., S. Dhir and J.M. Widholm. 1991. Plantlet regeneration from immature cotyledon protoplasts of soybean (Glycine max L.). Plant Cell Rep. 10(1):39-43. https://doi.org/10.1007/BF00233030
  21. Dhir, S.K., S. Dhir and J.M. Widholm. 1992. Regeneration of fertile plants from protoplasts of soybean (Glycine max L. Merr.): Genotypic differences in culture response. Plant Cell Rep. 11(5-6):285-289. https://doi.org/10.1007/BF00235083
  22. Du, H., X. Zeng, M. Zhao, X. Cui, Q. Wang, H. Yang, H. Cheng and D. Yu. 2016. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J. Biotechnol. 217:90-97. https://doi.org/10.1016/j.jbiotec.2015.11.005
  23. Dufourmantel, N., G. Tissot, F. Goutorbe, F. Garçon, C. Muhr, S. Jansens, B. Pelissier, G. Peltier and M. Dubald. 2005. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol. 58:659-668. https://doi.org/10.1007/s11103-005-7405-3
  24. Dufourmantel, N., M. Dubald, M. Matringe, H. Canard, F. Garcon, C. Job, E. Kay, J.P. Wisniewski, J.M. Ferullo, B. Pelissier, A. Sailland and G. Tissot. 2007. Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotech. J. 5:118-133. https://doi.org/10.1111/j.1467-7652.2006.00226.x
  25. Eck, J.V. 2018. Genome editing and plant transformation of solanaceous food crops. Curr. Opin. Biotech. 49:35-41. https://doi.org/10.1016/j.copbio.2017.07.012
  26. Eckert, H., B.L. Vallee, B.J. Schweiger, A.J. Kinney, E.B. Cahoon and T. Clemente. 2006. Co-expression of the borage ${\Delta}6$ desaturase and the Arabidopsis ${\Delta}15$ desaturase results in high accumulation of steridonic acid in the seeds of transgenic soybean. Planta 224:1050-1057. https://doi.org/10.1007/s00425-006-0291-3
  27. Farnham, M.W. 1998. Doubled-haploid broccoli production using anther culture: effect of anther source and seed set characteristics of derived lines. J. Amer. Soc. Hort. Sci. 123: 73-77. https://doi.org/10.21273/JASHS.123.1.73
  28. Ferrie, A. and W.A. Keller. 1995. Evaluation of Brassica rapa L. genotypes for microspore culture response and identification of a highly embryogenic line. Plant Cell Rep. 14:580-584. https://doi.org/10.1007/BF00231942
  29. Finer, J.F., and A. Nagasawa. 1988. Development of an embyrogenic suspension culture of soybean (Glycine max Merill). Plant Cell Tissue Org. Cult. 15:125-136. https://doi.org/10.1007/BF00035754
  30. Flores, T., O. Karpova, X. Su, P. Zeng, K. Bilyeu, D.A. Sleper, H.T. Nguyen and Z.J. Zhang. 2008. Silencing of GmFAD3 gene by siRNA leads to low ${\alpha}$-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res. 17:839-850. https://doi.org/10.1007/s11248-008-9167-6
  31. Gaj, M.D., S.B. Zhang, J.J. Harada and P.G. Lemaus. 2005. LEAFT COTYLEDON genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977-988. https://doi.org/10.1007/s00425-005-0041-y
  32. Gamborg, O.L., B.P. Davis and R.W. Stahlhut. 1983. Somatic embryogenesis in cell cultures of Glycine species. Plant Cell Rep. 2:209-212. https://doi.org/10.1007/BF00270106
  33. Gazzarrini, S., Y. Tsuchiya, S. Lumba, M. Okamoto and P. Mccourt. 2004. The transcription factor FUSCA3 controls development timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev. Cell 7:373-385. https://doi.org/10.1016/j.devcel.2004.06.017
  34. Ge, X.J., Z.H. Chu, Y.J. Lin and S.P. Wang. 2006. A tissue culture system for different germplasms of indica rice. Plant Cell Rep. 25:392-402. https://doi.org/10.1007/s00299-005-0100-7
  35. Guiderdoni, E., E. Galinato, J. Luistro and G. Vergara. 1992. Anther culture of tropical japonica x indica hybrids of rice (Oryza sativa L.). Euphytica 62(3):219-224. https://doi.org/10.1007/BF00041756
  36. Guo, W.W., D. Prasard, Y.P. Cheng, P. Serrano, X.X. Deng and J.W. Grosser. 2004. Targeted cybridization in citrus: transfer of Satuma cytoplasm to seedy cultivars for potential seedlessness. Plant Cell Rep. 22:752-758. https://doi.org/10.1007/s00299-003-0747-x
  37. Hai, N.H., S.K. Lal, S.K. Singh, A. Talukdar and Vinod. 2016. Anther culture of Glycine max (Merr.): Effect of media on callus induction and organogenesis. Indian J. Genet. 76(3):319-325. https://doi.org/10.5958/0975-6906.2016.00048.1
  38. Hamada, H., Q. Linghu, Y. Nagira, R. Miki, N. Taoka and R. Imai. 2017. An in planta biolistic method for stable wheat transformation. Sci. Rep. 7:11443. https://doi.org/10.1038/s41598-017-11936-0
  39. Hammatt, A. and M.R. Davey. 1988. Isolation and culture of soybean hypocotyl protoplasts. In Vitro Cell. Develop. Biol. 24(6): 601-604. https://doi.org/10.1007/BF02629097
  40. Hansen, G. and M.S. Wright. 1999. Recent advances in the transformation of plants. Trends in Plant Sci. 4(6): 226-231. https://doi.org/10.1016/S1360-1385(99)01412-0
  41. He, G.Y. and P.A. Lazzeri. 2001. Improvement of somatic embryogenesis and plant regeneration from durum wheat (Triticum turgidum var. durum Desf.) scutellum and inflorescence cultures. Euphytica 119:369-376. https://doi.org/10.1023/A:1017587628995
  42. Hecht, V., J.P. Vielle-calzada, M.V. Hartog, E.D. Schmidt, K. Boutilier, U. Grossniklaus, and S.C.D. Vries. 2001. The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127:803-816. https://doi.org/10.1104/pp.010324
  43. Herman, E.M., R.M. Helm, R. Jung and A.J. Kinney. 2003. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 132:36-43. https://doi.org/10.1104/pp.103.021865
  44. Hinchee, M., A.W. Connor-Ward, D.V. Newell, C.A. Mcdonnell, R.E. S.J. Sato, C.S. Gasser, D.A. Fischhoff, D.B. Re, R.T. Fraley and R.B. Horsch. 1988. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nat. Biotech. 6:915-922. https://doi.org/10.1038/nbt0888-915
  45. Ivers, D.R., R.G. Palmer and W.R. Fehr. 1974. Anther culture in soybeans. Crop Sci. 14(6):891-893. https://doi.org/10.2135/cropsci1974.0011183X001400060035x
  46. Ishida, Y, Y. Hiei and T. Komari. 2007. Agrobacteriummediated transformation of maize. Nat. Protoc. 2:1614-1621. https://doi.org/10.1038/nprot.2007.241
  47. Jacquard, C., F. Nolin, C. Hecart, D. Grauda, I. Rashal, S. Dhondt-Cordelier, R.S. Sangwan, P. Devaus, F. Mazeyrat-Gourbeyre and C. Clement. 2009. Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep. 28:1329-1339. https://doi.org/10.1007/s00299-009-0733-z
  48. Jaganathan, D., K. Ramasamy, G. Sellamuthu, S. Jayabalan and G. Venkataraman. 2018. CRISPR for crop improvement: An update review. Front. Plant Sci. 9:985. https://doi.org/10.3389/fpls.2018.00985
  49. Jeong, N., K.S. Kim, S. Jeong, J.Y. Kim, S.K. Park, J.S. Lee, S.C. Jeong, S.T. Kang, B.K. Ha, D.Y. Kim, N. Kim, J.K. Moon and M.S. Choi. 2019. Korean soybean core collection: Genotypic and phenotypic diversity population structure and genome-wide association study. PLoS ONE 14(10):e0224074. https://doi.org/10.1371/journal.pone.0224074
  50. Kakkar, R.K., P.K. Nagar, P.S. Ahuja and V.K. Rai. 2000. Polyamines and plant morphogenesis. Biol. Plant 43:1-11.
  51. Kaltchuk-Santos, E., J.E. Mariath, E. Mundstock, C.Y. Hu and M.H. Bodanese-Zanettini. 1997. Cytological analysis of early microspore divisions and embryo formation in cultured soybean anthers. Plant Cell Tissue Org. Cult. 49(2):107-115. https://doi.org/10.1023/A:1005897915415
  52. Kaneda, Y., Y. Tabei, S. Nishimura, K. Harada, T. Akihama and K. Kitamure. 1997. Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybean (Glycine max (L.) Merrill). Plant Cell Rep. 17:8-12. https://doi.org/10.1007/s002990050342
  53. Karthik, S., G. Pavan, V. Krishnan, S. Sathish and M. Manickavasagam. 2019. Sodium nitroprusside enhances regeneration and alleviates salinity stress in soybean [Glycine max (L.) Merrill]. Biocatal. Agricult. Biotech. 19:101173. https://doi.org/10.1016/j.bcab.2019.101173
  54. Kao, K.N., W.A. Keller and R.A. Miller. 1970. Cell division in newly formed cells from protoplasts of soybean. Exp. Cell Res. 62:338-340. https://doi.org/10.1016/0014-4827(70)90563-X
  55. Kao, K.N., F. Constabel, M.R. Michayluk and O.L. Gamborg. 1974. Plant protoplast fusion and growth of intergeneric hybrid cells. Planta 120(3):215-227. https://doi.org/10.1007/BF00390290
  56. Keller, W.A. and K.C. Armstrong. 1983. Production of haploids via anther culture in Brasica oleracea var. Italica. Euphytica 32:151-159. https://doi.org/10.1007/BF00036875
  57. Khalafalla, M.M., S.M. Rahman, E.S. Ha, Y. Nakamoto, K. Wakasa and M. Ishimoto. 2005. Optimization of particle bombardment conditions by monitoring of transient sGFP (S65T) expression in transformed soybean. Breed. Sci. 55:257-263. https://doi.org/10.1270/jsbbs.55.257
  58. Kim, D.G., V. Kantayos, D.K. Kim, H.G. Park, H.H. Kim, E.S. Rha, S.C. Lee and C.H. Bae. 2016. Plant regeneration by in vitro tissue culture in Korean soybean (Glycine max L.). Korean J. Plant Res. 29(1):143-153 (in Korean). https://doi.org/10.7732/kjpr.2016.29.1.143
  59. Kim, H.J., H.S. Cho, J.H. Park, K.J. Kim, D.H. Lee and Y.S. Chung. 2017. Overexpression of a chromatin architecturecontrolling ATPG7 has positive effect on yield components in transgenic soybean. Plant Breed. Biotech. 5(3):237-242. https://doi.org/10.9787/PBB.2017.5.3.237
  60. Kim, W.S. and H.B. Krishnan. 2004. Expression of an 11kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells. Plant biotech. J. 2:199-210. https://doi.org/10.1111/j.1467-7652.2004.00063.x
  61. Kita, Y., K. Nishizawa, M. Takahashi, M. Kitayama and M. Ishimoto. 2007. Genetic improvement of the somatic embryogenesis and regeneration in soybean and transformation of the improved breeding lines. Plant Cell Rep. 26:439-447. https://doi.org/10.1007/s00299-006-0245-z
  62. Klein, A.S., D. Montezinos and D.P. Delmer. 1981. Cellulose and 1,3-glucan synthesis during the early stages of wall regeneration in soybean protoplasts. Planta 152(2):105-114. https://doi.org/10.1007/BF00391181
  63. Komatsuda, T. and K. Ohyama. 1988. Genotypes of high competence for somatic embryogenesis and plant regeneration in soybean Glycine max. Theor. Appl. Genet. 75(5):695-700. https://doi.org/10.1007/BF00265589
  64. Lhee, W.Y., Y.H. Cho and K.Y. Paek. 1997. Effect of BA and GA on embryo germination from ovule culture in intergeneric hybrids between Brassica and Raphanus. Korean J. Plant Tissue Cult. 24:257-262.
  65. Li, R., K. Yu, T. Hatanaka and D.F. Hildebrand. 2010. Vernonia DGATs increase accumulation of epoxy fatty acids in oil. Plant Biotech. J. 8:184-195. https://doi.org/10.1111/j.1467-7652.2009.00476.x
  66. Li, S., Y. Cong, Y. Liu, T. Wang, Q. Shuai, N. Chen, J. Gai and Y. Li. 2017. Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci. 24(8):246.
  67. Lin, C.S., C.T. Hsu, L.H. Yang, L.Y. Lee, J.Y. Fu, Q.W. Cheng, F.H. Wu, H.C.W. Hsiao, Y. Zhang, R. Zhang, W.J. Chang, C.T. Yu, W. Wang, L.J. Liao, S.B. Gelvin and M.C. shih. 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: From single-cell mutation detection to mutant plant regeneration. Plant Biotech. J. 16:1295-1310. https://doi.org/10.1111/pbi.12870
  68. Lin, W., J.T. Odell and R.M. Schreiner. 1987. Soybean protoplast culture and direct gene uptake and expression by cultured soybean protoplasts. Plant Physiol. 84:856-861. https://doi.org/10.1104/pp.84.3.856
  69. Mano, Y. and T. Komatsuda. 2002. Identification of QTLs controlling tissue-culture traits in barley (Hordeum vulgare L.). Theor. Appl. Genet. 105:708-715. https://doi.org/10.1007/s00122-002-0992-3
  70. Matzke, A.J.M., F. Neuhuber, Y.D. Park, P.F. Ambros and M.A. Matzke. 1994. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 244:219-229. https://doi.org/10.1007/BF00285449
  71. McCabe, D.E. and B.J. Martinell. 1993. Transformation of elite cotton cultivars via particle bombardment of meristems. Nature Biotech. 11:596-598. https://doi.org/10.1038/nbt0593-596
  72. Melchers, G. and G. Labib. 1974. Somatic hybridisation of plants by fusion of protoplasts. Mol. Gen. Genet. 135(4): 277-294. https://doi.org/10.1007/BF00271144
  73. Neale D.B., J.L. Wegrzyn, K.A. Stevens, A.V. Zimin, D.Puiu, M.W. Crepeau, C. Cardeno, M. Koriabine, A.E. Holtz-Morris, J.D. Liechty, P.J. Martinez-Garcia, H.A. Vasquez-Gross, B.Y. Lin, J.J. Zieve, W.M. Dougherty, S. Fuentes-Soriano, L. Wu, D. Gilbert, G. Marçais, M. Roberts, C. Holt, M. Yandell, J.M. Davis, K.E. Smith, J.F.D. Dean, W.W Lorenz, R.W. Whetten, R. Sederoff, N. Wheeler, P.E. McGuire, D. Main, C.A. Loopstra, K. Mockaitis, P.J. deJong, J.A. Yorke, S.L. Salzberg and C.H. Langley. 2014. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 15:R59. https://doi.org/10.1186/gb-2014-15-3-r59
  74. Newell, C.A. and H.T. Luu. 1985. Protoplast culture and plant regeneration in Glycine canescens F. J. Herm. Plant Cell Tissue Org. Cult. 4(2):145-149. https://doi.org/10.1007/BF00042272
  75. Nguyen, K.L., A. Grondin, B. Courtois and P. Gantet. 2019. Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci. 24(3):263-274. https://doi.org/10.1016/j.tplants.2018.11.008
  76. Nishimura, A., M. Ashikari, S. Lin, T. Takashi, E.R. Angeles, T. Yamamoto and M. Matsuoka. 2005. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. PNASU 102(33):11940-11944. https://doi.org/10.1073/pnas.0504220102
  77. Ochatt, S., C. Pech, R. Grewal, C. Conreux, M. Lulsdorf and L. Jacas. 2009. Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J. Plant Physiol. 166:1314-1328. https://doi.org/10.1016/j.jplph.2009.01.011
  78. Parrott, W.A., E.G. Williams, D.F. Hildebrand and G.B. Collins. 1989. Effect of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell Tissue Org. Cult. 16:15-21. https://doi.org/10.1007/BF00044068
  79. Parrott, W.A., J.N. All, M.J. Adang, M.A. Bailey, H.R. Boerma, and C.N. Stewart, JR. 1994. Recovery and evaluation of soybean plants transgenic for a bacillus thuringiensis var. kurstaki insecticidal gene. In Vitro Cell. Dev. Biol. 30:144-149. https://doi.org/10.1007/BF02632204
  80. Phippen, C. and D.J. Ockendon. 1990. Genotype, plant, bud size and media factors affecting anther culture of cauliflowers (Brassica oleracea var. botrytis). Theor. Appl. Genet. 79:33-38. https://doi.org/10.1007/BF00223783
  81. Qian, W., R. Liu and J. Meng. 2003. Genetic effects on biomass yield in interspecific hybrids between Brassica napus and B. rapa. Euphytica 134:9-15. https://doi.org/10.1023/A:1026180823401
  82. Rakshit, S., Z. Rashid, J.C. Sekhar, T. Fatma and S. Dass. 2009. Callus induction and whole plant regeneration in elite indian maize (Zea mays L.) inbreds. Plant Cell Tissue Org. Cult. 100:31-37. https://doi.org/10.1007/s11240-009-9613-z
  83. Raza, G., M.B. Singh and P.L. Bhalla. 2017. In vitro plant regeneration from commercial cultivars of soybean. BioMed Res. Int. 2017:7379693.
  84. Rhodes, C.A., D.A. Pierce, I.J. Mettler, D. Mascarenhas and J.J. Detmer. 1988. Genetically transformed maize plants from protoplast. Science 240(4849):204-207. https://doi.org/10.1126/science.2832947
  85. Rodrigues, L.R., J.M.S Oliveira, J.E.A. Mariath, and M.H. Bodanese-Zanettini. 2005. Histology of embryogenic responses in soybean anther culture. Plant Cell Tissue Org. Cult. 80(2): 129-137. https://doi.org/10.1007/s11240-004-9159-z
  86. Sahoo, K.K., A.K. Tripathi, A. Pareek, S.K. Sopory and S.L. Singla-Pareek. 2011. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7:49. https://doi.org/10.1186/1746-4811-7-49
  87. Sairam, R.V., G. Franklin, R. Hassel, B. Smith, K. Meeker, N. Kashikar, M. Parani, A. Dal, S. Ismail, K. Berry and L. Goldman. 2003. A study on effect of genotypes, plant growth regulators and sugars in promoting plant regeneration via organogenesis from soybean cotyledonary nodal callus. Plant Cell Tissue Org. Cult. 75:79-85. https://doi.org/10.1023/A:1024649122748
  88. Sato, S., A. Xing, X. Ye, B. Schweiger, A. Kinney, G. Graef and T. Clemente. 2004. Production of ${\gamma}$-linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop. Sci. 44:646-652. https://doi.org/10.2135/cropsci2004.6460
  89. Schmutz J., S.B. Cannon, J. Schlueter, J. Ma, T. Mitros, W. Nelson, D.L. Hyten, Q. Song, J.J. Thelen, J. Cheng, D. Xu, U. Hellsten, G.D. May, Y. Yu, T. Sakurai, T. Umezawa, M.K. Bhattacharyya, D. Sandhu, B. Valliyodan, E. Lindquist, M. Peto, D. Grant, S. Shu, D. Goodstein, K. Barry, M. Futrell-Griggs, B. Abernathy, J. Du, Z. Tian, L. Zhu, N. Gill, T. Joshi, M. Libault, A. Sethuraman, X.C. Zhang, K. Shinozaki, H.T. Nguyen, R.A. Wing, P. Cregan, J. Specht, J. Grimwood, D. Rokhsar, G. Stacey, R.C. Shoemaker and S.A. Jackson. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:178-183. https://doi.org/10.1038/nature08670
  90. Seo, M.S., M. Jin, S.S. Lee, S.J. Kwon, J.H. Mun, B.S. Park, R.G.F. Visser, G. Bonnema and S.H. Sohn. 2013. Mapping quantitative trait loci for tissue culture response in VCS3MDH population of Brassica rapa. Plant Cell Rep. 32:1251-1261. https://doi.org/10.1007/s00299-013-1433-2
  91. Seo, M.S., S.H. Sohn, B.S. Park, H.C. Ko and M. Jin. 2014. Efficiency of microspore embryogenesis in Brassica rapa using different genotypes and culture conditions. J. Plant Biotech. 41:116-122 (in Korean). https://doi.org/10.5010/JPB.2014.41.3.116
  92. Seo, M.S., Won S.Y., Kang S.H., S.H. Sohn and J.S. Kim. 2015. Development of tissue culture technology for haploid production in Brassica species. Korean J. Int. Agric. 27(4): 522-528 (in Korean). https://doi.org/10.12719/KSIA.2015.27.4.522
  93. Shan, Z., K. Raemakers, E.N. Tzitzikas, Z. Ma and R.G. Visser. (2005) Development of a highly efficient, repetitive system of organogenesis in soybean (Glycine max (L.) Merr). Plant Cell Rep. 24(9):507-512. https://doi.org/10.1007/s00299-005-0971-7
  94. Shetty, K., Y. Asano, and K. Oosawa. 1992. Stimulation of in vitro shoot organogenesis in Glycine max (Merrill.) by allantoin and amides. Plant Sci. 81:245-251. https://doi.org/10.1016/0168-9452(92)90048-Q
  95. Singh, R.J. and T. Hymowitz. 1999. Soybean genetic resources and crop improvement. Genome 42:605-616. https://doi.org/10.1139/g99-039
  96. Staswick, P.E., Z. Zhang, T.E. Clemente and J.E. Specht. 2001. Efficient down-regulation of the major vegetative storage protein genes in transgenic soybean does not compromise plant productivity. Plant Physiol. 127(4):1819-1826. https://doi.org/10.1104/pp.010638
  97. Sun, X., Z. Hu, R. Chen, Q. Jiang, G. Song, H. Zhang and Y. Xi. 2015. Targeted mutagenesis in soybean using the CRISPRCas9 system. Sci. Rep. 5:10342. https://doi.org/10.1038/srep10342
  98. Taguchi-Shiobara, F., S.Y. Lin, K. Tanno, T. omatsuda, M. Yano, T. Sasaki and S. Oka. 1997. Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor. Appl. Genet. 95:828-833. https://doi.org/10.1007/s001220050632
  99. Taguchi-Shiobara, F., T. Yamamoto, M. Yano and S. Oka. 2006. Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor. Appl. Genet. 112:968-976. https://doi.org/10.1007/s00122-005-0200-3
  100. Takagi, K., K. Nishizawa, A. Hirose, A. Kita and M. Ishimoto. 2011. Manipulation of saponin biosynthesis by RNA interference-mediated silencing of ${\beta}$-amyrin synthase gene expression in soybean. Plant Cell Rep. 30:1835-1846. https://doi.org/10.1007/s00299-011-1091-1
  101. Thakare, D., W. Tang, K. Hill and S.E. Perry. 2008. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol. 146(4):1663-1672. https://doi.org/10.1104/pp.108.115832
  102. Tougou, M., N. Yamagishi, N. Furutani, Y. Shizukawa, Y. Takahata and S. Hidaka. 2007. Soybean dwarf virus-resistant transgenic soybeans with the sense coat protein gene. Plant Cell Rep. 26:1967-1975. https://doi.org/10.1007/s00299-007-0404-x
  103. Touraev, A., A. Ilham, O. Vicente and E. Heberle-Bors. 1996. Stress-induced microspore embryogenesis in tobacco: An optimized system for molecular studies. Plant Cell Rep. 15:561-565. https://doi.org/10.1007/BF00232453
  104. Travella, S., R.M. Ross, J. Harden, C. Everett, J.W. Snape and W.A. Harwood. 2004. A comparison of transgenic barley lines produced by particle bombardment and Agrobacteriummediated techniques. Plant Cell Rep. 23:780-789. https://doi.org/10.1007/s00299-004-0892-x
  105. Trick, H.N. and J.J. Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep. 17:482-488. https://doi.org/10.1007/s002990050429
  106. Uchimiya, H., T. Fushimi, H. Hashimoto, H. Harada, K. Syono and Y. Sugawara. 1986. Expression of a foreign gene in callus derived from DNA treated protoplasts of rice (Oryza sativa L.). Mol. Gen. Genet. 22:421-477.
  107. Vagadia, B.H., S.K. Vanga, and V. Raghavan. 2017. Inactivation methods of soybean trypsin inhibitor-a review. Trends Food Sci. Technol. 64:115-125. https://doi.org/10.1016/j.tifs.2017.02.003
  108. Valente, M.A.S., J.A.Q.A. Faria, J.R.L. Soares-Ramos, P.A.B. Reis, G.L. Pinheiro, N.D. Piovesan, A.T. Morais, C.C. Menezes, M.A.O. Cano, L.G. Fietto, M.E. Loureiro, F.J.L. Aragao and E.P. B. Fontes. 2009. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J. Exp. Bot. 60:533-546. https://doi.org/10.1093/jxb/ern296
  109. Vasil, I.K. and V. Vasil. 2006. Transformation of wheat via particle bombardment. Meth. Mol. Biol. 318:273-283.
  110. Velasco, R., A. Zharkikh, J. Affourtit, A. Dhingra, A. Cestaro, A. Kalyanaraman, P. Fontana, S.K. Bhatnagar, M. Troggio and D. Pruss. 2010. The genome of the domesticated apple (Malus ${\times}$ domestica Borkh.). Nature Genetics 42:833-839. https://doi.org/10.1038/ng.654
  111. Wang, X., S. Liu and Y. Luo. 2009. Research progression soybean tissue culture system and transformation. Soybean Sci. 28:731-735.
  112. Wei, Z.M. and Z.H. Xu. 1988. Plant regeneration from protoplasts of soybean (Glycine max L.). Plant Cell Rep. 7(5):348-351. https://doi.org/10.1007/BF00269935
  113. Wheatley, W. G., A. A. Marsolais and K. J. Kasha. 1986. Microspore growth and anther staging in wheat anther culture. Plant Cell Rep. 5:47-49. https://doi.org/10.1007/BF00269716
  114. Wright, M.S., S.M. Koehler, M.A. Hinchee and M.G. Carnes. 1986. Plant regeneration by organogenesis in Glycine max. Plant Cell Rep. 5(2):150-154. https://doi.org/10.1007/BF00269257
  115. Yang, C., T.J. Zhao, D.Y. Yu, and J.Y. Gai. 2011. Mapping QTLs for tissue culture response in soybean (Glycine max (L.) Merr). Mol. Cells 32:337-342. https://doi.org/10.1007/s10059-011-0063-1
  116. Yang, Y.S., K. Wada and Y. Futsuhara. 1990. Comparative studies of organogenesis and plant regeneration in various soybean explants. Plant Sci. 72(1):101-108. https://doi.org/10.1016/0168-9452(90)90191-P
  117. Yoshida, T. 2002. Adventitious shoot formation from hypocotyl sections of mature soybean seeds. Breeding Sci. 52:1-8. https://doi.org/10.1270/jsbbs.52.1
  118. Yu, O., J. Shi, A.O. Hession, C.A. Maxwell, B. McGonigle and J.T. Odell. 2003. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753-763. https://doi.org/10.1016/S0031-9422(03)00345-5
  119. Zeng, P., D.A. Vadnais, Z. Zhang and J.C. Polacco. 2004. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep. 22:478-482. https://doi.org/10.1007/s00299-003-0712-8
  120. Zernova, O.V., A.V. Lygin, J.M. Widholm and V.V. Lozovaya. 2009. Modification of isoflavones in soybean seeds via expression of multiple phenolic biosynthetic genes. Plant Physiol. Biochem. 47:769-777. https://doi.org/10.1016/j.plaphy.2009.05.006
  121. Zieg, R.G. and D.E. Outka. 1980. The isolation, culture and callus formation of soybean pod protoplasts. Plant Sci. Lett. 18(2):105-114. https://doi.org/10.1016/0304-4211(80)90038-3
  122. Zhang, C., X. Wu, B. Zhang, Q. Chen, M. Liu, D. Xin, Z. Qi, S. Li, Y. Ma, L. Wang, Y. Jin, W. Li, X. Wu and A.Y. Su. 2017. Functional analysis of the GmESR1 gene associated with soybean regeneration. Plos ONE 12(4):e0175656. https://doi.org/10.1371/journal.pone.0175656
  123. Zhang, K., L. Zhao, X. Yang, M. Li, J. Sun, K. Wang, Y. Li, Y. Zheng, Y. Yao and W. Li. 2018. GmRAV1 regulates regeneration of roots and adventitious buds by the cytokinin signaling pathway in Arabidopsis and soybean. Physiol. Plant. 165(4): 814-829. https://doi.org/10.1111/ppl.12788
  124. Zhang, W. and R. Wu. 1998. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor. Appl. Genet. 76:835-840. https://doi.org/10.1007/BF00273668
  125. Zhang, Y.X., L. Bouvier and Y. Lespinasse. 1992. Microspore embryogenesis induced by low gamma dose irradiation in apple. Plant Breed. 108:173-176. https://doi.org/10.1111/j.1439-0523.1992.tb00117.x
  126. Zhao, G., Y. Liu, A. Yin and J. Li. 1998. Germination of embryo in soybean anther culture. Chin. Sci. Bull. 43(23):1991-1995. https://doi.org/10.1007/BF03186991
  127. Zhao, Q., Y. Du, H. Wang, H.J. Rogers, C. Yu, W. Liu, M. Zhao, and F. Xie. 2019. 5-azacytiding promotes shoot regeneration during Agrobacterium-mediated soybean transformation. Plant Physiol. Biochem. 141:40-50. https://doi.org/10.1016/j.plaphy.2019.05.014
  128. Zheng, Q. and S.E. Perry. 2014. Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of Agamous-like15 and Agamouslike18. Plant Physiol. 164(3):1365-77. https://doi.org/10.1104/pp.113.234062
  129. Zheng, Q., Y. Zheng, H. Ji, W. Burnie and S.E. Perry. 2016. Gene regulation by the AGL15 transcription factor reveals hormone interactions in somatic embryogenesis. Plant Physiol. 172(4):2374-2387. https://doi.org/10.1104/pp.16.00564

Cited by

  1. 다양한 콩 자원들의 기내 조직배양 효율 및 형질전환 vol.34, pp.4, 2020, https://doi.org/10.7732/kjpr.2021.34.4.278