DOI QR코드

DOI QR Code

Quantification of Fibers through Automatic Fiber Reconstruction from 3D Fluorescence Confocal Images

  • Park, Doyoung (Department of Mathematics, Computer & Information Science, SUNY Old Westbury)
  • Received : 2020.06.29
  • Accepted : 2020.07.27
  • Published : 2020.07.31

Abstract

Motivation: Fibers as the extracellular filamentous structures determine the shape of the cytoskeletal structures. Their characterization and reconstruction from a 3D cellular image represent very useful quantitative information at the cellular level. In this paper, we presented a novel automatic method to extract fiber diameter distribution through a pipeline to reconstruct fibers from 3D fluorescence confocal images. The pipeline is composed of four steps: segmentation, skeletonization, template fitting and fiber tracking. Segmentation of fiber is achieved by defining an energy based on tensor voting framework. After skeletonizing segmented fibers, we fit a template for each seed point. Then, the fiber tracking step reconstructs fibers by finding the best match of the next fiber segment from the previous template. Thus, we define a fiber as a set of templates, based on which we calculate a diameter distribution of fibers.

Keywords

References

  1. W. M. Petroll, H. D. Cavanagh, P. Barry, P. Andrews, and J. V. Jester, "Quantitative analysis of cell fiber orientation during corneal wound contraction", J. Cell. Sci, 104, pp. 353-363, February1993. https://doi.org/10.1242/jcs.104.2.353
  2. D. B. Thomason, O. Anderson, and V. Menon, "Fractal analysis of cytoskeleton rearrangement in cardiac muscle during head-down tilt", Journal of Applied Physiology, Vol. 81, No. 4, pp. 1522-1527, October 1996. https://doi.org/10.1152/jappl.1996.81.4.1522
  3. J. Weichsel, N. Herold, N., M. J. Lehmann, H-G. Krausslich, and U. S. Schwarz, "A quantitative measure for alterations in the actin cytoskeleton investigated with automated high-throughput microscopy", Cytometry A , Vol. 77, No. 1, pp. 52-63, January 2010.
  4. W. J. Karlon, P. P. Hsu, S. Li, S. Chien, A. D. McCulloch, and J. H. Omens, "Measurement of orientation and distribution of cellular alignment and cytoskeletal organization", Annals of Biomedical Engineering, Vol. 27, pp. 712-720, November 1999. https://doi.org/10.1114/1.226
  5. B. B. Chaudhuri, P. Kundu, and N. Sarkar, "Detection and gradation of oriented texture", Pattern Recogn. Lett., Vol. 14, No. 2, pp. 147-153, Februay1993. https://doi.org/10.1016/0167-8655(93)90088-U
  6. S. Tsugawa, N. Hervieux N, O. Hamant, A. Boudaoud, R. S. Smith, C. B. Li, and T. Komatsuzaki, "Extracting subcellular fibrillar alignment with error estimation: application to microtubules", Biophysical Journal, Vol. 110, No. 8, pp. 1836-1844, April 2016. https://doi.org/10.1016/j.bpj.2016.03.011
  7. A. Zemel, F. Rehfeldt, B. Aex, D. E. Discher, and S. A. Safran, "Optimal matrix rigidity for stress-fibre polarization in stem cells", Nature Physics, Vol. 6, pp. 468-473. March 2010. https://doi. 10.1038/nphys1613.
  8. R. Haralick R and L. Shapiro, "Computer and robot vision", Vol.1, Addison-Wesley Publishing Company; 1992.
  9. N. Lichtenstein, B. Geiger, and Z. Kam, "Quantitative analysis of cytoskeletal organization by digital fluorescent microscopy", Cytometry A, Vol. 54, pp. 8-18, June 2003. https://doi.org/10.1002/cyto.a.10053
  10. B. Eltzner, C. Wollnik, C, Gottschlich, S. Huckemann, and F. Rehfeldt, "The filament sensor for near realtime detection of cytoskeletal fiber structures", Plos One, Vol. 10, No. 5, pp. 1-28, May 2015, https://doi.10.1371/journal.pone.0126346.
  11. S. Basu, K. N. Dahl, and G. K. Rohde, "Localizing and extracting filament distributions from microscopy images", Journal of Microscopy, Vol. 250, pp. 57-67, 2013. Retracted due to image copyright, doi: 10.1111/jmi. 12018 PMID: 23458491.
  12. Shariff, A., Murphy, R. F., and Rohde, G. K, "A Generative model of microtubule distributions, and indirect estimation of its parameters from fluorescence microscopy images", Cytometry, Part A, Vol. 77A, No. 5, pp. 457-466, May 2010.
  13. F. Fleischer, R. Ananthakrishnan, S. Eckel, H. Schmidt, J. Kas, T. Svitkina, and V. Schmidt M. Beil, "Actin network architecture and elasticity in lamellipodia of melanoma cells", New Jourlal of Physics, Vol. 9, pp. 1-14, November 2007. https://doi.org/10.1088/1367-2630/9/1/001
  14. H. Li, T. Shen, and X. Huang, "Actin Filament Segmentation Using Dynamic Programming", Int'l Conf. Information Processing in Medical Imaging (IPMI), Kloster Irsee, Germany, July 2011, pp. 411-423.
  15. H. Li, T. Shen, D. Vavylonis, and X. Huang, "Actin filament segmentation using spatiotemporal active-surface and active-contour models", Int'l Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI), Beijing, China, September 2010, pp. 86-94.
  16. A. Can, J.N. Turner. H. L. Tanenbaum, and B. Roysam, "Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms", IEEE Trans. Info. Tech. Biomed, Vol. 3, pp. 125-138, June 1999. https://doi.org/10.1109/4233.767088
  17. F. Tupin, F., H. Maitre, J-F. Mangin, J-M. Nicolas, and E. Pechersky, "Detection of linear features in SAR images: application to road network extraction", IEEE Trans. Geosci. Remote Sensing, Vol. 36, No. 2, pp. 434-453, March 1998. https://doi.org/10.1109/36.662728
  18. F. Aguet, M. Jacob, and M. Unser, "Three-dimensional feature detection using optimal steerable filters", IEEE International Conference on Image Processing 2005, Genova, Italy September 2005, pp. II-1158.
  19. J. Wu, B. Rajwa, D.L. Filmer, C. M. Hoffmann, B. Yuan, C-S. Chiang, J. E. Sturgis, and J. P. Robinson, "Automated quantification, and reconstruction of collagen matrix from 3D confocal datasets", J. Microsc., Vol. 210, pp. 158-165, May 2003. https://doi.org/10.1046/j.1365-2818.2003.01191.x
  20. D.Y. Park, "Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts", Journal of Advanced Information Technology and Convergence (JAITC), Vol. 9, No. 1, pp. 89-102, July 2019. https://doi.org/10.14801/jaitc.2019.9.1.89
  21. D.Y. Park, "Quantitative image analysis of fluorescence image stacks: Appli-cation to cytoskeletal proteins organization in tissue engineering constructs", Journal of Advanced Information Technology and Convergence (JAITC), Vol. 9, No. 1, pp. 103-113, July 2019 https://doi.org/10.14801/jaitc.2019.9.1.103
  22. G. Guy and G. Medioni, "Inference of surfaces, 3D curves, and junctions from sparse, noisy 3D data", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 11, pp. 1265-1277, November 1997. https://doi.org/10.1109/34.632985
  23. G. Medioni, M.S. Lee, and C.K. Tang, "Computational Framework for Segmentation and Grouping", Elsevier Science Inc., New York, NY, USA, 2000.
  24. N. Otsu, "A threshold selection method from gray-level histograms", IEEE Trans. Sys., Man., Cyber, Vol. 9, No. 1, pp. 62-66, January 1979. https://doi.org/10.1109/TSMC.1979.4310076
  25. Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 11, pp. 1222-1239, November 2001. https://doi.org/10.1109/34.969114
  26. T.C. Lee, R.L. Kashyap, and C.N. Chu, "Building skeleton models via 3-D medial surface/axis thinning algorithms", Computer Vision, Graphics, and Image Processing, Vol. 56, No. 6, pp. 462-478, November 1994.
  27. O. Friman, M. Hindennach, C. Kuhnel, and H.-O. Peitgen, "Multiple hypothesis template tracking of small 3D vessel structures", Medical Image Analysis, Vol. 14, No. 2, pp. 160-171, April 2010. https://doi.org/10.1016/j.media.2009.12.003
  28. P. E. Gill and W. Murray, "Algorithms for the solution of the nonlinear least squares problem", SIAM Journal on Numerical Analysis, Vol. 15, No. 5, pp. 977-992, October 1978. https://doi.org/10.1137/0715063
  29. D. B. Reid, "An algorithm for tracking multiple targets", IEEE Transactions on Automatic Control, Vol. 24, No. 6, pp. 843-854, December1979. https://doi.org/10.1109/TAC.1979.1102177
  30. D. L. Donoho and M. R. Duncan, "Digital Curvelet Transform: Strategy", Implementation and Experiments; Technical Report, Stanford University 1999
  31. http://athena.physics.lehigh.edu/jfilament/index.chy (accessed: June 26, 2020)