DOI QR코드

DOI QR Code

나노방출제어시스템을 이용하여 trichloroacetic acid와 epidermal growth factor의 순차적 방출을 적용한 인간치은섬유아세포의 세포생존 관련 유전자 연구분석

Analysis of cell survival genes in human gingival fibroblasts after sequential release of trichloroacetic acid and epidermal growth factor using the nano-controlled release system

  • 조준연 (강동경희대학교치과병원 치과보철과 경희대학교 치과대학 치과보철학교실) ;
  • 이성복 (강동경희대학교치과병원 치과보철과 경희대학교 치과대학 치과보철학교실) ;
  • 이석원 (강동경희대학교치과병원 치과보철과 경희대학교 치과대학 치과보철학교실)
  • Cho, Joon Youn (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Lee, Richard sungbok (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Lee, Suk Won (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University)
  • 투고 : 2020.04.21
  • 심사 : 2020.06.10
  • 발행 : 2020.09.30

초록

목적: 본 연구에서는 구강연조직재생에서 인간치은섬유아세포에 hydrophobically modified glycol chitosan (HGC) 기반 나노방출제어시스템을 적용 시 PI3K-AKT 신호전달의 세포생존 연관 유전자를 통해 trichloroacetic acid (TCA)와 epidermal growth factor (EGF)의 영향을 확인하고자 하였다. 연구 재료 및 방법: TCA와 EGF를 방출하는 나노방출제어시스템을 제작하였다. 실험군은 3가지 군으로 나누었다; 대조군(CON), TCA-담지형 나노방출제어시스템 투여군(EXP1), TCA-와 EGF- 담지형 나노방출제어시스템 투여군(EXP2). 인간치은섬유아세포 배양 후 PI3K-AKT 신호전달에 연관된 총 29개 유전자를 실시간 중합효소연쇄반응으로 분석했다. 일요인 분산분석 및 다중회귀분석이 사용되었다. 결과: 세포생존 관련 유전자들은 EXP1과 EXP2에서 상향조절되었다. 다중회귀분석에서는 ITGB1이 AKT1의 발현에 가장 영향력 있는 요소로 결정되었다. 결론: HGC기반 나노방출제어시스템을 통한 TCA와 EGF의 적용은 세포생존에 관한 신호전달을 상향 조절시킬 수 있다.

Purpose: This study was to determine the possible effects of trichloroacetic acid (TCA) and epidermal growth factor (EGF) through cell survival genes of the PI3K-AKT signaling pathway when applying an hydrophobically modified glycol chitosan (HGC)-based nanocontrolled release system to human gingival fibroblasts in oral soft tissue regeneration. Materials and Methods: An HGC-based nano-controlled release system was produced, followed by the loading of TCA and EGF. The group was divided into control (CON), TCA-loaded nano-controlled release system (EXP1), and the TCA- and EGF- individually loaded nano-controlled release system (EXP2). A total for 29 genes related to the PI3K-AKT signaling pathway were analyzed after 48h of culture in human gingival fibroblasts. Real-time PCR, 1- way ANOVA and multiple regression analysis were performed. Results: Cell survival genes were significantly upregulated in EXP1 and EXP2. From multiple regression analysis, ITGB1 was determined to be the most influential factor for AKT1 expression. Conclusion: The application of TCA and EGF through the HGC-based nano-controlled release system can up-regulate the cell survival pathway.

키워드

참고문헌

  1. Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2016;143:3050-60. https://doi.org/10.1242/dev.137075
  2. Osaki M, Oshimura M, Ito H. The PI3K-Akt pathway: Its functions and alterations in human cancer. Apoptosis 2004;9:667-76. https://doi.org/10.1023/B:APPT.0000045801.15585.dd
  3. Manning BD, Cantley LC. AKT/PKB Signaling: Navigating Downstream. Cell 2007;129:1261-74. https://doi.org/10.1016/j.cell.2007.06.009
  4. Cheung M, Testa JR. Diverse mechanisms of AKT pathway activation in human malignancy. Curr Cancer Drug Targets 2013;13:234-44. https://doi.org/10.2174/1568009611313030002
  5. Romano G. The role of the dysfunctional aktrelated pathway in cancer: Establishment and maintenance of a malignant cell phenotype, resistance to therapy, and future strategies for drug development. Scientifica (Cairo) 2013;2013:317186. https://doi.org/10.1155/2013/317186
  6. Virtakoivu R, Pellinen T, Rantala JK, Perala M, Ivaska J. Distinct roles of AKT isoforms in regulating ${\beta}1$-integrin activity, migration, and invasion in prostate cancer. Mol Biol Cell 2012;23:3357-69. https://doi.org/10.1091/mbc.E12-03-0213
  7. Brock C, Schaefer M, Reusch HP, Czupalla C, Michalke M, Spicher K, Schultz G, Nurnberg B. Roles of $G{\beta}{\gamma}$ in membrane recruitment and activation of $p110{\gamma}$/p101 phosphoinositide 3-kinase ${\gamma}$. J Cell Biol 2003;160:89-99. https://doi.org/10.1083/jcb.200210115
  8. Stephens L, Eguinoa A, Corey S, Jackson T, Hawkins PT. Receptor stimulated accumulation of phosphatidylinositol (3,4,5)-trisphosphate by Gprotein mediated pathways in human myeloid derived cells. EMBO J 1993;12:2265-73. https://doi.org/10.1002/j.1460-2075.1993.tb05880.x
  9. Reiske HR, Zhao J, Han DC, Cooper LA, Guan JL. Analysis of FAK-associated signaling pathways in the regulation of cell cycle progression. FEBS Lett 2000;486:275-80. https://doi.org/10.1016/S0014-5793(00)02295-X
  10. Hlobilkova A, Knillova J, Bartek J, Lukas J, Kolar Z. The mechanism of action of the tumour suppressor gene PTEN. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2003;147:19-25. https://doi.org/10.5507/bp.2003.003
  11. Sly LM, Rauh MJ, Kalesnikoff J, Buchse T, Krystal G. SHIP, SHIP2, and PTEN activities are regulated in vivo by modulation of their protein levels: SHIP is up-regulated in macrophages and mast cells by lipopolysaccharide. Exp Hematol 2003;31:1170-81. https://doi.org/10.1016/j.exphem.2003.09.011
  12. Kalesnikoff J, Sly LM, Hughes MR, Buchse T, Rauh MJ, Cao LP, Lam V, Mui A, Huber M, Krystal G. The role of SHIP in cytokine-induced signaling. Rev Physiol Biochem Pharmacol 2003;149:87-103. https://doi.org/10.1007/s10254-003-0016-y
  13. Lee KH, Ben Amara H, Lee SC, Leesungbok R, Chung MA, Koo KT, Lee SW. Chemical regeneration of wound defects: relevance to the canine palatal mucosa and cell cycle up-regulation in human gingival fibroblasts. Tissue Eng Regen Med 2019;16:675-84. https://doi.org/10.1007/s13770-019-00227-6
  14. Park KM, Lee HJ, Koo KT, Ben Amara HB, Leesungbok R, Noh K, Lee SC, Lee SW. Oral soft tissue regeneration using the nano controlled system inducing sequential release of trichloroacetic acid and epidermal growth factor. Tissue Eng Regen Med 2020;17:91-103. https://doi.org/10.1007/s13770-019-00232-9
  15. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005;9:59-71. https://doi.org/10.1111/j.1582-4934.2005.tb00337.x
  16. Lateef Z, Wise LM. Exploitation of receptor tyrosine kinases by viral-encoded growth factors. Growth factors 2018;36:118-40. https://doi.org/10.1080/08977194.2018.1520229
  17. White MF, Kahn CR. The insulin signaling system. J Biol Chem 1994;269:1-4. https://doi.org/10.1016/S0021-9258(17)42297-6
  18. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373-84. https://doi.org/10.1038/ni.1863
  19. Yokozeki T, Adler K, Lankar D, Bonnerot C. B cell receptor-mediated Syk-independent activation of phosphatidylinositol 3-kinase, Ras, and mitogenactivated protein kinase pathways. J Immunol 2003;171:1328-35. https://doi.org/10.4049/jimmunol.171.3.1328
  20. Lankester AC, Rood PM, van Schijndel GM, Hooibrink B, Verhoeven AJ, van Lier RA. Alteration of B-cell antigen receptor signaling by CD19 coligation. A study with bispecific antibodies. J Biol Chem 1996;271:22326-30. https://doi.org/10.1074/jbc.271.37.22326
  21. Kurosaki T. Regulation of B-cell signal transduction by adaptor proteins. Nat Rev Immunol 2002;2:354-63. https://doi.org/10.1038/nri801
  22. Yamazaki T, Takeda K, Gotoh K, Takeshima H, Akira S, Kurosaki T. Essential immunoregulatory role for BCAP in B cell development and function. J Exp Med 2002;195:535-45. https://doi.org/10.1084/jem.20011751
  23. Russell SM, Johnston JA, Noguchi M, Kawamura M, Bacon CM, Friedmann M, Berg M, McVicar DW, Witthuhn BA, Silvennoinen O, et al. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science. 1994;266:1042-5. https://doi.org/10.1126/science.7973658
  24. Foster FM, Traer CJ, Abraham SM, Fry MJ. The phosphoinositide (PI) 3-kinase family. J Cell Sci 2003;116(Pt 15):3037-40. https://doi.org/10.1242/jcs.00609
  25. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 1988;4:487-525. https://doi.org/10.1146/annurev.cb.04.110188.002415
  26. Patel J, Channon KM, McNeill E. The downstream regulation of chemokine receptor signalling: implications for atherosclerosis. Mediators Inflamm 2013;2013:459520. https://doi.org/10.1155/2013/459520
  27. Matheny RW Jr, Adamo ML. Current perspectives on Akt Akt-ivation and Akt-ions. Exp Biol Med (Maywood) 2009;234:1264-70. https://doi.org/10.3181/0904-MR-138
  28. Laine J, Kunstle G, Obata T, Sha M, Noguchi M. The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell 2000;6:395-407. https://doi.org/10.1016/S1097-2765(00)00039-3
  29. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 2002;277:39858-66. https://doi.org/10.1074/jbc.M206322200

피인용 문헌

  1. The Application of Chitosan Nanostructures in Stomatology vol.26, pp.20, 2020, https://doi.org/10.3390/molecules26206315