• 제목/요약/키워드: PI3K-AKT pathway

Search Result 264, Processing Time 0.029 seconds

Role of PI3-Kinase/Akt Pathway in the Activation of Etoposide-Induced $NF-{\kappa}B$ Transcription Factor

  • Choi Yong-Seok;Park Heon-Yong;Jeong Sun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.391-398
    • /
    • 2006
  • $NF-{\kappa}B$ is a transcription factor involved in the innate immunity against bacterial infection and inflammation. It is also known to render cells resistant to the apoptosis caused by some anticancer drugs. Such a chemoresistance of cancer cells may be related to the activation of $NF-{\kappa}B$ transcription factor; however, the mechanism of activation is not well understood. Here, we demonstrate that a chemotherapeutic agent, etoposide, independently stimulates the $I{\kappa}B{\alpha}$ degradation pathway and PI3-kinase/Akt signaling pathway: The classical $I{\kappa}B{\alpha}$ degradation pathway leads to the nuclear translocation and DNA binding of p65 subunit through $IKK{\beta}$ kinase, whereas the PI3-kinase/Akt pathway plays a distinct role in activating this transcription factor. The PI3-kinase/Akt pathway acts on the p50 subunit of the $NF-{\kappa}B$ transcription factor and enhances the DNA binding affinity of the p50 protein. It may also explain the role of the PI3-kinase/Akt pathway in the anti-apoptotic function of $NF-{\kappa}B$ during chemoresistance of cancer cells.

Odorant Stimulation Promotes Survival of Rodent Olfactory Receptor Neurons via PI3K/Akt Activation and Bcl-2 Expression

  • Kim, So Yeun;Yoo, Seung-Jun;Ronnett, Gabriele V;Kim, Eun-Kyoung;Moon, Cheil
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.535-539
    • /
    • 2015
  • Olfactory stimulation activates multiple signaling cascades in order to mediate activity-driven changes in gene expression that promote neuronal survival. To date, the mechanisms involved in activity-dependent olfactory neuronal survival have yet to be fully elucidated. In the current study, we observed that olfactory sensory stimulation, which caused neuronal activation, promoted activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and the expression of Bcl-2, which were responsible for olfactory receptor neuron (ORN) survival. We demonstrated that Bcl-2 expression increased after odorant stimulation both in vivo and in vitro. We also showed that odorant stimulation activated Akt, and that Akt activation was completely blocked by incubation with both a PI3K inhibitor (LY294002) and Akt1 small interfering RNA. Moreover, blocking the PI3K/Akt pathway diminished the odorantinduced Bcl-2 expression, as well as the effects on odorant-induced ORN survival. A temporal difference was noted between the activation of Akt1 and the expression of Bcl-2 following odorant stimulation. Blocking the PI3K/Akt pathway did not affect ORN survival in the time range prior to the increase in Bcl-2 expression, implying that these two events, activation of the PI3K pathway and Bcl-2 induction, were tightly connected to promote post-translational ORN survival. Collectively, our results indicated that olfactory activity activated PI3K/Akt, induced Bcl-2, and promoted long term ORN survival as a result.

MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway

  • Long, Zi-Wen;Wu, Jiang-Hong;Hong, Cai;Wang, Ya-Nong;Zhou, Ye
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.532-544
    • /
    • 2018
  • Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR-374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.

Curcumin targets vascular endothelial growth factor via activating the PI3K/Akt signaling pathway and improves brain hypoxic-ischemic injury in neonatal rats

  • Li, Jia;An, Yan;Wang, Jia-Ning;Yin, Xiao-Ping;Zhou, Huan;Wang, Yong-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.423-431
    • /
    • 2020
  • This study aimed to evaluate the effect of curcumin on brain hypoxic-ischemic (HI) damage in neonatal rats and whether the phosphoinositide 3-kinase (PI3K)/Akt/vascular endothelial growth factor (VEGF) signaling pathway is involved. Brain HI damage models were established in neonatal rats, which received the following treatments: curcumin by intraperitoneal injection before injury, insulin-like growth factor 1 (IGF-1) by subcutaneous injection after injury, and VEGF by intracerebroventricular injection after injury. This was followed by neurological evaluation, hemodynamic measurements, histopathological assessment, TUNEL assay, flow cytometry, and western blotting to assess the expression of p-PI3K, PI3K, p-Akt, Akt, and VEGF. Compared with rats that underwent sham operation, rats with brain HI damage showed remarkably increased neurological deficits, reduced right blood flow volume, elevated blood viscosity and haematocrit, and aggravated cell damage and apoptosis; these injuries were significantly improved by curcumin pretreatment. Meanwhile, brain HI damage induced the overexpression of p-PI3K, p-Akt, and VEGF, while curcumin pretreatment inhibited the expression of these proteins. In addition, IGF-1 treatment rescued the curcumin-induced down-regulated expression of p-PI3K, p-Akt, and VEGF, and VEGF overexpression counteracted the inhibitory effect of curcumin on brain HI damage. Overall, pretreatment with curcumin protected against brain HI damage by targeting VEGF via the PI3K/Akt signaling pathway in neonatal rats.

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells (인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.835-842
    • /
    • 2016
  • The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

Insulin-Like Growth Factor-I-Induced Androgen Receptor Activation Is Mediated by the PI3K/Akt Pathway in C2C12 Skeletal Muscle Cells

  • Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.495-499
    • /
    • 2009
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR and IGF-I in skeletal muscle cells has not been previously examined. In this study, the role of PI3K/Akt on IGF-I-induced gene expression and activation of AR in skeletal muscle cells was investigated. C2C12 cells were treated with IGF-I in the absence or presence of inhibitors of PI3K/Akt pathway (LY294002 and Wortmannin). Inhibition of the PI3K/Akt pathway with LY294002 or Wortmannin led to a significant decrease in IGF-I-induced AR phosphorylation and total AR protein expression. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by LY294002 or Wortmannin. Confocal images showed that IGF-I-induced AR translocation from cytosol to nucleus was inhibited significantly in response to treatment with LY294002 or Wortmannin. The present results suggest that modulating effect of IGF-I on AR gene expression and activation in C2C12 mouse skeletal muscle cells is mediated at least in part by the PI3K/Akt pathway.

Melatonin Induces Akt Phosphorylation through Melatonin Receptor- and PI3K-Dependent Pathways in Primary Astrocytes

  • Kong, Pil-Jae;Byun, Jong-Seon;Lim, So-Young;Lee, Jae-Jun;Hong, Sung-Jun;Kwon, Kwang-Jun;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.37-41
    • /
    • 2008
  • Melatonin has been reported to protect neurons from a variety of neurotoxicity. However, the underlying mechanism by which melatonin exerts its neuroprotective property has not yet been clearly understood. We previously demonstrated that melatonin protected kainic acid-induced neuronal cell death in mouse hippocampus, accompanied by sustained activation of Akt, a critical mediator of neuronal survival. To further elucidate the neuroprotective action of melatonin, we examined in the present study the causal mechanism how Akt signaling pathway is regulated by melatonin in a rat primary astrocyte culture model. Melatonin resulted in increased astrocytic Akt phosphorylation, which was significantly decreased with wortmannin, a specific inhibitor of PI3K, suggesting that activation of Akt by melatonin is mediated through the PI3K-Akt signaling pathway. Furthermore, increased Akt activation was also significantly decreased with luzindole, a non-selective melatonin receptor antagonist. As downstream signaling pathway of Akt activation, increased levels of CREB phoshorylation and GDNF expression were observed, which were also attenuated with wortmannin and luzindole. These results strongly suggest that melatonin exerts its neuroprotective property in astrocytes through the activation of plasma membrane receptors and then PI3K-Akt signaling pathway.

Potential Targets for Prevention of Colorectal Cancer: a Focus on PI3K/Akt/mTOR and Wnt Pathways

  • Pandurangan, Ashok Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2201-2205
    • /
    • 2013
  • Colorectal cancer (CRC) is one of the most common cancers in many parts of the world. Its development is a multi-step process involving three distinct stages, initiation that alters the molecular message of a normal cell, followed by promotion and progression that ultimately generates a phenotypically altered transformed malignant cell. Reports have suggested an association of the phosphoinositide-3-kinase (PI3K)/Akt pathway with colon tumorigenesis. Activation of Akt signaling and impaired expression of phosphatase and tensin homolog (PTEN) (a negative regulator of Akt) has been reported in 60-70% of human colon cancers and inhibitors of PI3K/Akt signaling have been suggested as potential therapeutic agents. Around 80% of human colon tumors possess mutations in the APC gene and half of the remainder feature ${\beta}$-catenin gene mutations which affect downstream signaling of the PI3K/Akt pathway. In recent years, there has been a great focus in targeting these signaling pathways, with natural and synthetic drugs reducing the tumor burden in different experiment models. In this review we survey the role of PI3K/Akt/mTOR and Wnt signaling in CRC.

20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway

  • Xia, Ting;Zhang, Jin;Zhou, Chuanxin;Li, Yu;Duan, Wenhui;Zhang, Bo;Wang, Min;Fang, Jianpei
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.725-737
    • /
    • 2020
  • Background: T-cell acute lymphoblastic leukemia (T-ALL) is a kind of aggressive hematological cancer, and the PI3K/Akt/mTOR signaling pathway is activated in most patients with T-ALL and responsible for poor prognosis. 20(S)-Ginsenoside Rh2 (20(S)-GRh2) is a major active compound extracted from ginseng, which exhibits anti-cancer effects. However, the underlying anticancer mechanisms of 20(S)-GRh2 targeting the PI3K/Akt/mTOR pathway in T-ALL have not been explored. Methods: Cell growth and cell cycle were determined to investigate the effect of 20(S)-GRh2 on ALL cells. PI3K/Akt/mTOR pathway-related proteins were detected in 20(S)-GRh2-treated Jurkat cells by immunoblotting. Antitumor effect of 20(S)-GRh2 against T-ALL was investigated in xenograft mice. The mechanisms of 20(S)-GRh2 against T-ALL were examined by cell proliferation, apoptosis, and autophagy. Results: In the present study, the results showed that 20(S)-GRh2 decreased cell growth and arrested cell cycle at the G1 phase in ALL cells. 20(S)-GRh2 induced apoptosis through enhancing reactive oxygen species generation and upregulating apoptosis-related proteins. 20(S)-GRh2 significantly elevated the levels of pEGFP-LC3 and autophagy-related proteins in Jurkat cells. Furthermore, the PI3K/Akt/mTOR signaling pathway was effectively blocked by 20(S)-GRh2. 20(S)-GRh2 suppressed cell proliferation and promoted apoptosis and autophagy by suppressing the PI3K/Akt/mTOR pathway in Jurkat cells. Finally, 20(S)-GRh2 alleviated symptoms of leukemia and reduced the number of white blood cells and CD3 staining in the spleen of xenograft mice, indicating antitumor effects against T-ALL in vivo. Conclusion: These findings indicate that 20(S)-GRh2 exhibits beneficial effects against T-ALL through the PI3K/Akt/mTOR pathway and could be a natural product of novel target for T-ALL therapy.

Regulation of Interleukin-17 Production in Patients with Rheumatoid Arthritis by Phosphoinositide 3-kinase (PI3K)/Akt and Nuclear Factor KappaB (NF-κB) Dependent Signal Transduction Pathway (류마티스 관절염 환자의 말초혈액 단핵세포에서 Phosphoinositide 3-Kinase (PI3K)/Akt와 Nuclear Factor KappaB (NF-κB) 신호전달을 통한 IL-17 생성조절)

  • Kim, Kyoung-Woon;Cho, Mi-La;Lee, Sang-Heon;Min, So-Youn;Park, Mi Kyung;Park, Sung-Hwan;Jue, Dae-Myung;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.310-319
    • /
    • 2003
  • Inflammatory mediators has been recognized as an important role in the pathogenesis of rheumatoid arthritis (RA). IL-17 is increasingly recognized as an important regulator of immune and inflammatory responses, including induction of proinflammatory cytokines and osteoclastic bone resorption. Evidence of the expression and proinflammatory activity of IL-17 has been demonstrated in RA synovium and in animal models of RA. However, the signaling pathways that regulate IL-17 production remain unknown. In the present study, we investigated the role of the phosphatidylinositol 3 kinase (PI3K)-Akt pathway in the regulation of IL-17 production in RA. PBMC were separated from RA (n=24) patients, and stimulated with various agents (anti CD3, anti CD28, PHA, ConA, IL-15). IL-17 levels were determined by sandwich ELISA and RT-PCR. The production of IL-17 was significantly increased in cells treated with anti-CD3 antibody, PHA, IL-15 or MCP-1 (P<0.05). ConA also strongly induced IL-17 production (P<0.001), whereas TNF-alpha, IL-1beta, IL-18 or TGF-beta did not. IL-17 was detected in the PBMC of patients with osteoarthritis (OA) but their expression levels were much lower than those of RA PBMC. Anti-CD3 antibody activated the PI3K-Akt pathway and activation of the PI3K-Akt pathway resulted in a pronounced augmentation of nuclear factor kappaB ($NF-{\kappa}B$). IL-17 production by activated PBMC in RA is completely or partially blocked in the presence of $NF-{\kappa}B$ inhibitor PDTC and PI3K-Akt inhibitor, wortmannin and LY294002, respectively. Whereas the inhibition of AP-1 and extracellular signal-regulated kinase (ERK)1/2 did not affect IL-17 production. These results provide new insight into that PI3K/Akt and $NF-{\kappa}B$ dependent signal transduction pathway could be involved in the overproduction of key inflammatory cytokine, IL-17 in rheumatoid arthritis.