DOI QR코드

DOI QR Code

A Review on the RF Coil Designs and Trends for Ultra High Field Magnetic Resonance Imaging

  • Received : 2020.04.07
  • Accepted : 2020.05.11
  • Published : 2020.09.30

Abstract

In this article, we evaluated the performance of radiofrequency (RF) coils in terms of the signal-to-noise ratio (S/N) and homogeneity of magnetic resonance images when used for ultrahigh-frequency (UHF) 7T magnetic resonance imaging (MRI). High-quality MRI can be obtained when these two basic requirements are met. However, because of the dielectric effect, 7T magnetic resonance imaging still produces essentially a non-uniform magnetic flux (|B1|) density distribution. In general, heterogeneous and homogeneous RF coils may be designed using electromagnetic (EM) modeling. Heterogeneous coils, which are surface coils, are used in consideration of scalability in the |B1| region with a high S/N as multichannel loop coils rather than selecting a single loop. Loop coils are considered state of the art for their simplicity yet effective |B1|-field distribution and intensity. In addition, combining multiple loop coils allows phase arrays (PA). PA coils have gained great interest for use in receiving signals because of parallel imaging (PI) techniques, such as sensitivity encoding (SENSE) and generalized autocalibrating partial parallel acquisition (GRAPPA), which drastically reduce the acquisition time. With the introduction of a parallel transmit coil (pTx) system, a form of transceiver loop arrays has also been proposed. In this article, we discussed the applications and proposed designs of loop coils. RF homogeneous coils for volume imaging include Alderman-Grant resonators, birdcage coils, saddle coils, traveling wave coils, transmission line arrays, composite right-/left-handed arrays, and fusion coils. In this article, we also discussed the basic operation, design, and applications of these coils.

Keywords

References

  1. Mansfield P, Grannell PK. NMR 'diffraction' in solids? J Phys C Solid State Phys 1973;6:L422-427 https://doi.org/10.1088/0022-3719/6/22/007
  2. Wang J, Mao W, Qiu M, Smith MB, Constable RT. Factors influencing flip angle mapping in MRI: RF pulse shape, slice-select gradients, off-resonance excitation, and B0 inhomogeneities. Magn Reson Med 2006;56:463-468 https://doi.org/10.1002/mrm.20947
  3. Ernst RR, Anderson WA. Applications of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 1966;37:93-102 https://doi.org/10.1063/1.1719961
  4. Klomp DWJ, van der Graaf M, Willemsen MAAP, van der Meulen YM, Kentgens APM, Heerschap A. Transmit/receive headcoil for optimal 1H MR spectroscopy of the brain in paediatric patients at 3T. MAGMA 2004;17:1-4 https://doi.org/10.1007/s10334-004-0039-7
  5. Redpath TW, Wiggins CJ. Estimating achievable signalto-noise ratios of MRI transmit-receive coils from radiofrequency power measurements: applications in quality control. Phys Med Biol 2000;45:217-227 https://doi.org/10.1088/0031-9155/45/1/315
  6. Kumar A, Edelstein WA, Bottomley PA. Noise figure limits for circular loop MR coils. Magn Reson Med 2009;61:1201-1209 https://doi.org/10.1002/mrm.21948
  7. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007;26:375-385 https://doi.org/10.1002/jmri.20969
  8. Kaufman L, Kramer DM, Crooks LE, Ortendahl DA. Measuring signal-to-noise ratios in MR imaging. Radiology 1989;173:265-267 https://doi.org/10.1148/radiology.173.1.2781018
  9. Henkelman RM. Erratum: Measurement of signal intensities in the presence of noise in MR images. Med Phys 1986;13:544 https://doi.org/10.1118/1.595860
  10. Smith NB, Webb A. Introduction to medical imaging-Physics, engineering and clinical applications. Cambridge, UK: Cambridge University Press, 2011
  11. Chen CN, Hoult DI, Sank VJ. Quadrature detection coils - A further $\sqrt{2}$ improvement in sensitivity. J Magn Reson 1983;54:324-327 https://doi.org/10.1016/0022-2364(83)90057-4
  12. Glover GH, Hayes CE, Pelc NJ, et al. Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 1985;64:255-270 https://doi.org/10.1016/0022-2364(85)90349-X
  13. Springer E, Dymerska B, Cardoso PL, et al. Comparison of routine brain imaging at 3 T and 7 T. Invest Radiol 2016;51:469-482 https://doi.org/10.1097/RLI.0000000000000256
  14. Pradhan S, Bonekamp S, Gillen JS, et al. Comparison of single voxel brain MRS AT 3T and 7T using 32-channel head coils. Magn Reson Imaging 2015;33:1013-1018 https://doi.org/10.1016/j.mri.2015.06.003
  15. Suttie JJ, Delabarre L, Pitcher A, et al. 7 Tesla (T) human cardiovascular magnetic resonance imaging using FLASH and SSFP to assess cardiac function: validation against 1.5 T and 3 T. NMR Biomed 2012;25:27-34 https://doi.org/10.1002/nbm.1708
  16. Vaidya MV, Collins CM, Sodickson DK, Brown R, Wiggins GC, Lattanzi R. Dependence of B1+ and B1- field patterns of surface coils on the electrical properties of the sample and the MR operating frequency. Concepts Magn Reson Part B Magn Reson Eng 2016;46:25-40 https://doi.org/10.1002/cmr.b.21319
  17. Jin JM. Electromagnetics in magnetic resonance imaging. IEEE Trans Antennas Propag Mag 1998;40:7-22
  18. Collins CM. Electromagnetics in magnetic resonance imaging: physical principles, related applications, and ongoing developments. Morgan & Claypool Publishers, 2016
  19. Ibrahim TS. Analytical approach to the MR signal. Magn Reson Med 2005;54:677-682 https://doi.org/10.1002/mrm.20600
  20. Hoult DI. The principle of reciprocity in signal strength calculations-a mathematical guide. Concepts Magn Reson 2000;12:173-187 https://doi.org/10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q
  21. Balanis CA. Advanced engineering electromagnetics. New York: John Wiley & Sons, Inc., 1989:323-326
  22. Chunli W, Zhiming B, Jingkui X, Jinxing W. Simulation analysis on quality factor of RF receiving coil for an MRI system. In 2009 Chinese Control and Decision Conference, 2009:4652-4655
  23. Ibrahim TS, Hue YK, Tang L. Understanding and manipulating the RF fields at high field MRI. NMR Biomed 2009;22:927-936 https://doi.org/10.1002/nbm.1406
  24. Collins CM. Numerical field calculations considering the human subject for engineering and safety assurance in MRI. NMR Biomed 2009;22:919-926 https://doi.org/10.1002/nbm.1251
  25. Avdievich NI, Oh S, Hetherington HP, Collins CM. Improved homogeneity of the transmit field by simultaneous transmission with phased array and volume coil. J Magn Reson Imaging 2010;32:476-481 https://doi.org/10.1002/jmri.22257
  26. Chen X, Steckner M. Electromagnetic computation and modeling in MRI. Med Phys 2017;44:1186-1203 https://doi.org/10.1002/mp.12103
  27. Jean-Jacques D. What are the differences between various EM-simulation numerical methods. www.mwrf.com/. Published November 10, 2014. Accessed February 7, 2020
  28. Ansys HFSS software. https://www.ansys.com/Products/Electronics/ANSYS-HFSS. Accessed February 7, 2020
  29. SIM4LIFE software, ZMT. https://www.zmt.swiss. Accessed February 7, 2020
  30. COMSOL multiphysics. https://www.comsol.com. COMSOL AB, Stockholm, Sweden. Accessed February 7, 2020
  31. Feko electromagnetic simulation software. https://altairhyperworks.com/product/Feko. Accessed February 7, 2020
  32. Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 1996;41:2231-2249 https://doi.org/10.1088/0031-9155/41/11/001
  33. Weyers D, McKinnon G, Becerra R, Mathew S, Edwards M. Shading reduction at 3.0 T using an elliptical drive. Proc Int Soc Magn Reson Med 2006;14:2023
  34. Nistler J, Diehl D, Renz W, Eberler L. Homogeneity improvement using a 2 port birdcage coil. Proc Int Soc Magn Reson Med 2007;15:1063
  35. Hernandez D, Cho MH, Lee SY. Iterative multi-channel radio frequency pulse calibration with improving B1 field uniformity in high field MRI. Biomed Eng Online 2015;14:15 https://doi.org/10.1186/s12938-015-0010-z
  36. Jia H, Wang C, Wang G, et al. Impact of 3.0 T cardiac MR imaging using dual-source parallel radiofrequency transmission with patient-adaptive B1 shimming. PLoS One 2013;8:e66946 https://doi.org/10.1371/journal.pone.0066946
  37. Ibrahim TS, Lee R, Baertlein BA, Abduljalil AM, Zhu H, Robitaille PM. Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator. Magn Reson Imaging 2001;19:1339-1347 https://doi.org/10.1016/S0730-725X(01)00404-0
  38. Collins CM, Liu W, Swift BJ, Smith MB. Combination of optimized transmit arrays and some receive array reconstruction methods can yield homogeneous images at very high frequencies. Magn Reson Med 2005;54:1327-1332 https://doi.org/10.1002/mrm.20729
  39. Abraham R, Ibrahim TS. Proposed radiofrequency phasedarray excitation scheme for homogenous and localized 7-Tesla whole-body imaging based on full-wave numerical simulations. Magn Reson Med 2007;57:235-242 https://doi.org/10.1002/mrm.21139
  40. Van den Berg CA, Van den Bergen B, Kroeze H, Bartels LW, Lagendijk JJ. Simultaneous B1+ homogenisation and SAR hotspot suppression by a phased array MR transmit coil. Proc Int Soc Magn Reson Med 2006;14:2039
  41. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225 https://doi.org/10.1002/mrm.1910160203
  42. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
  43. Kim DE, Park YM, Perez M, Hernandez D, Lee JH, Lee SY. Retrospective 3D modeling of RF coils using a 3D tracker for EM simulation. Concepts Magn Reson Part B 2013;43B:126-132
  44. Perez M, Hernandez D, Michel E, Cho MH, Lee SY. A tool box to evaluate the phased array coil performance using retrospective 3D coil modeling. J Korean Soc Magn Reson Med 2014;18:107-119 https://doi.org/10.13104/jksmrm.2014.18.2.107
  45. Hernandez D, Kim KN. Computational analysis for the combination of inductive coupled wireless coils and high permittivity materials to improve B1 field for rhesus monkey MRI. Appl Comput Electrom 2019;34:1457-1460
  46. Wolf S, Diehl D, Gebhardt M, Mallow J, Speck O. SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed? Magn Reson Med 2013;69:1157-1168 https://doi.org/10.1002/mrm.24329
  47. Wang Z, Lin JC, Mao W, Liu W, Smith MB, Collins CM. SAR and temperature: simulations and comparison to regulatory limits for MRI. J Magn Reson Imaging 2007;26:437-441 https://doi.org/10.1002/jmri.20977
  48. Fiedler TM, Ladd ME, Bitz AK. SAR Simulations & Safety. Neuroimage 2018;168:33-58 https://doi.org/10.1016/j.neuroimage.2017.03.035
  49. Wu X, Zhang X, Tian J, et al. Comparison of RF body coils for MRI at 3 T: a simulation study using parallel transmission on various anatomical targets. NMR Biomed 2015;28:1332-1344 https://doi.org/10.1002/nbm.3378
  50. Giovannetti G, Flori A, De Marchi D, et al. Simulation, design, and test of an elliptical surface coil for magnetic resonance imaging and spectroscopy. Concepts Magn Reson Part B 2017;47B:e21361 https://doi.org/10.1002/cmr.b.21361
  51. Yan X, Gore JC, Grissom WA. Self-decoupled radiofrequency coils for magnetic resonance imaging. Nat Commun 2018;9:3481 https://doi.org/10.1038/s41467-018-05585-8
  52. Stara R, Fontana N, Alecci M, et al. RF coil design for low and high field MRI: numerical methods and measurements. In 2011 IEEE Nuclear Science Symposium Conference Record, 2011:3465-3469
  53. Haase A, Odoj F, Von Kienlin M, et al. NMR probeheads for in-vivo applications. Concept Magn Reson 2000;12:361-388 https://doi.org/10.1002/1099-0534(2000)12:6<361::AID-CMR1>3.0.CO;2-L
  54. Hayes CE, Edelstein WA, Schenck JF, Mueller OM, Eash M. An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson 1985;63:622-628 https://doi.org/10.1016/0022-2364(85)90257-4
  55. Edelstein WA, Glover GH, Hardy CJ, Redington RW. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 1986;3:604-618 https://doi.org/10.1002/mrm.1910030413
  56. Giovannetti G. Comparison between circular and square loops for low-frequency magnetic resonance applications: theoretical performance estimation. Concepts Magn Reson Part B 2016;46B:146-155 https://doi.org/10.1002/cmr.b.21343
  57. Fenn AJ, Temme DH, Delaney WP, Courtney WE. The development of phased-array radar technology. Lincoln Lab J 2000;12:321-340
  58. Schmitt M, Potthast A, Sosnovik DE, et al. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magn Reson Med 2008;59:1431-1439 https://doi.org/10.1002/mrm.21598
  59. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
  60. Sodickson DK, Griswold MA, Jakob PM. SMASH imaging. Magn Reson Imaging Clin N Am 1999;7:237-254 https://doi.org/10.1016/S1064-9689(21)00020-9
  61. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210 https://doi.org/10.1002/mrm.10171
  62. Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP. Parallel imaging performance as a function of field strength--an experimental investigation using electrodynamic scaling. Magn Reson Med 2004;52:953-964 https://doi.org/10.1002/mrm.20281
  63. Lee RF, Giaquinto RO, Hardy CJ. Coupling and decoupling theory and its application to the MRI phased array. Magn Reson Med 2002;48:203-213 https://doi.org/10.1002/mrm.10186
  64. Perez M, Hernandez D, Michel E, Cho MH, Lee SY. A tool box to evaluate the phased array coil performance using retrospective 3D coil modeling. J Korean Soc Mag Reson Med 2014;18:107-119 https://doi.org/10.13104/jksmrm.2014.18.2.107
  65. Kim KN, Hernandez D, Seo JH, et al. Quantitative assessment of phased array coils with different numbers of receiving channels in terms of signal-to-noise ratio and spatial noise variation in magnetic resonance imaging. PLoS One 2019;14:e0219407 https://doi.org/10.1371/journal.pone.0219407
  66. Kim KN, Ryu Y, Seo JH, Kim YB. Magnetic field sensitivity at 7-T using dual-helmholtz transmit-only coil and 12-channel receive-only bended coil. Scanning 2016;38:515-524 https://doi.org/10.1002/sca.21290
  67. Giovannetti G, Landini L, Santarelli MF, Positano V. A fast and accurate simulator for the design of birdcage coils in MRI. MAGMA 2002;15:36-44 https://doi.org/10.1007/BF02693842
  68. Chen CN, Hoult DI, Sank VJ. Quadrature detection coils-a further $\sqrt{2}$ improvement in sensitivity. J Magn Reson 1983;54:324-327 https://doi.org/10.1016/0022-2364(83)90057-4
  69. Vincent DE, Wang T, Magyar TAK, Jacob PI, Buist R, Martin M. Birdcage volume coils and magnetic resonance imaging: a simple experiment for students. J Biol Eng 2017;11:41 https://doi.org/10.1186/s13036-017-0084-1
  70. Vaughan JT, Adriany G, Snyder CJ, et al. Efficient highfrequency body coil for high-field MRI. Magn Reson Med 2004;52:851-859 https://doi.org/10.1002/mrm.20177
  71. Vaughan JT, Hetherington HP, Otu JO, Pan JW, Pohost GM. High frequency volume coils for clinical NMR imaging and spectroscopy. Magn Reson Med 1994;32:206-218 https://doi.org/10.1002/mrm.1910320209
  72. Giovannetti G. Birdcage coils: Equivalent capacitance and equivalent inductance. Concepts Magn Reson Part B 2014;44B:32-38 https://doi.org/10.1002/cmr.b.21260
  73. Seo JH, Han SD, Kim KN. Investigation of the B1 field distribution and RF power deposition in a birdcage coil as functions of the number of coil legs at 4.7 T, 7.0 T, and 11.7 T. J Korean Phys Soc 2015;66:1822-1826 https://doi.org/10.3938/jkps.66.1822
  74. Park JS, Kim J, Lee JO, et al. A new 3.0 T hybrid-spiralbirdcage (HSB) coil for improved homogeneity along z-axis. Proc Intl Soc Mag Reason Med 2000;8:1393
  75. Kim KN. Homogeneous and heterogeneous resonators in ultrahigh-field MRI. Doctoral dissertation, 2011
  76. Kim KN, Chung ST, Park BS, Shin YM, Kwak JS, Cho JW. Analysis of endcap effect for MRI birdcage RF coil by FDTD method. J Korean Soc Magn Reson Med 2003;7:137-143
  77. Salmon CEG, Vidoto ELG, Martins MJ, Tannus A. Optimization of saddle coils for magnetic resonance imaging. Braz J Phys 2006;36:4-8 https://doi.org/10.1590/S0103-97332006000100004
  78. Kim KN, Seo JH, Han SD, Heo P, Im GH, Lee JH. Development of double-layer coupled coil for improving S/N in 7 T small-animal MRI. Scanning 2015;37:361-371 https://doi.org/10.1002/sca.21217
  79. Zhang B, Sodickson DK, Lattanzi R, Duan Q, Stoeckel B, Wiggins GC. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms. Magn Reson Med 2012;67:1183-1193 https://doi.org/10.1002/mrm.23107
  80. Brunner DO, De Zanche N, Paska J, Frohlich J, Pruessmann KP. Traveling wave MR on a whole-body system. In Proceedings of the 16th Annual Meeting of ISMRM, 2008:434
  81. Brunner DO, De Zanche N, Frohlich J, Paska J, Pruessmann KP. Travelling-wave nuclear magnetic resonance. Nature 2009;457:994-998 https://doi.org/10.1038/nature07752
  82. KS OK, Li JLW, Xu ZX, Amo SB. A dual-feed circularlypolarized traveling-wave array antenna. In 2014 Asia- Pacific Microwave Conference, 2014:1417-1419
  83. Zhang B, Wiggins GC, Duan Q, Lattanzi R, Sodickson DK. Whole-body traveling-wave imaging at 7T: Simulation and early in-vivo experiment. In Proceedings of the 17th Annual Meeting of ISMRM, 2009:498
  84. Yan X, Gore JC, Grissom WA. Traveling-wave meets standing-wave: a simulation study using pair-oftransverse-dipole-ring (PTDR) coils for adjustable longitudinal coverage in ultra-high field MRI. Concepts Magn Reson Part B Magn Reson Eng 2018;48B
  85. Elabyad IA, Herrmann T, Bernarding J, Omar A. Combination of travelling wave approach and microstrip transceiver coil arrays for MRI at 7T. In 2011 IEEE MTT-S International Microwave Symposium, 2011:1-4
  86. Andreychenko A, Kroeze H, Klomp DW, Lagendijk JJ, Luijten PR, van den Berg CA. Coaxial waveguide for travelling wave MRI at ultrahigh fields. Magn Reson Med 2013;70:875-884 https://doi.org/10.1002/mrm.24496
  87. Vazquez F, Martin R, Marrufo O, Rodriguez AO. Travelling wave magnetic resonance imaging at 3 T. J Appl Phys 2013;114:064906 https://doi.org/10.1063/1.4817972
  88. Elabyad IA, Omar A, Herrmann T, Mallow J, Bernarding J. Travelling wave approach for high field magnetic resonance imaging. 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), 2010:5702899
  89. Andreychenko A, Klomp DW, van den Bergen B, et al. Effective delivery of the traveling wave to distant locations in the body at 7T. In Proceedings of the 17th Annual Meeting of ISMRM, 2009:501
  90. Mallow J, Herrmann T, Kim KN, et al. Ultra-high field MRI for primate imaging using the travelling-wave concept. MAGMA 2013;26:389-400 https://doi.org/10.1007/s10334-012-0358-z
  91. Herrmann T, Mallow J, Plaumann M, et al. The travellingwave primate system: a new solution for magnetic resonance imaging of macaque monkeys at 7 Tesla ultrahigh field. PLoS One 2015;10:e0129371 https://doi.org/10.1371/journal.pone.0129371
  92. Vazquez F, Marrufo O, Martin R, Solis S, Rodriguez AO. Transmission of travelling-wave with a simple waveguide for rodents MRI at 9.4 T. arXiv preprint arXiv:1511.02949, 2015
  93. Erturk MA, Raaijmakers AJ, Adriany G, Ugurbil K, Metzger GJ. A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI. Magn Reson Med 2017;77:884-894 https://doi.org/10.1002/mrm.26153
  94. Raaijmakers AJ, Luijten PR, van den Berg CA. Dipole antennas for ultrahigh-field body imaging: a comparison with loop coils. NMR Biomed 2016;29:1122-1130 https://doi.org/10.1002/nbm.3356
  95. Wu B, Wang C, Kelley DA, et al. Shielded microstrip array for 7T human MR imaging. IEEE Trans Med Imaging 2010;29:179-184 https://doi.org/10.1109/TMI.2009.2033597
  96. Alon L, Lattanzi R, Lakshmanan K, et al. Transverse slot antennas for high field MRI. Magn Reson Med 2018;80:1233-1242 https://doi.org/10.1002/mrm.27095
  97. Das SK. Antenna and wave propagation. Tata McGraw-Hill Education, 2013
  98. Kim HJ, Heo P, Han SD, Kim D, Song H, Kim KN. Improvements in radio-frequency transmission for ultrahigh field magnetic resonance imaging through a bilateral monopole antenna. Electromagnetics 2018;38:283-290 https://doi.org/10.1080/02726343.2018.1473141
  99. Akin B, Ozen AC. Microstrip array insert for head coils: towards layer fMRI at high fields. In ISMRM 27th Annual Meeting & Exhibition, 2019:0371
  100. Zhang X, Ugurbil K, Chen W. Microstrip RF surface coil design for extremely high-field MRI and spectroscopy. Magn Reson Med 2001;46:443-450 https://doi.org/10.1002/mrm.1212
  101. Rennings A, Mosig J, Bahr A, Caloz C, Ladd ME, Erni D. A CRLH metamaterial based RF coil element for magnetic resonance imaging at 7 Tesla. In Proceedings of the 3rd European Conference on Antennas and Propagation (EuCAP '09), 2009:3231-3234
  102. Erni D, Liebig T, Rennings A, Koster NH, Frohlich J. Highly adaptive RF excitation scheme based on conformal resonant CRLH metamaterial ring antennas for 7-Tesla traveling-wave magnetic resonance imaging. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011:554-558
  103. Mosig J, Bahr A, Bolz T, Rennings A. Design and characteristics of a metamaterial transmit/receive coil element for 7 Tesla MRI. In World Congress on Medical Physics and Biomedical Engineering, 2009:173-176
  104. Hernandez D, Seo JH, Kim KN. Linear array arrangement using composite right-/left-handed transmission lines for magnetic resonance imaging. Int J Imaging Syst Technol 2020;30:216-223 https://doi.org/10.1002/ima.22349
  105. Hernandez D, Seo J-H, Kim K-N. Comparisons for microstrip and CRLH transmission lines array coils at 7T. ISMRM 27th Annual Meeting & Exhibition, 2019:1515
  106. Svejda JT, Rennings A, Erni D. A metamaterial based dualresonant coil element for combined sodium/hydrogen MRI at 7-Tesla. tm - Technisches Messen 2016;84:2-12 https://doi.org/10.1515/teme-2016-0039
  107. Svejda JT, Erni D, Rennings A. An intrinsically double tuned half-wavelength CRLH resonator for combined 23Na/1H MRI. MAGMA 2013;26:346-348
  108. Hu R, Kleimaier D, Malzacher M, Hoesl MAU, Paschke NK, Schad LR. X-nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2020;51:355-376 https://doi.org/10.1002/jmri.26780
  109. Lim SI, Woo CW, Kim ST, Choe BY, Woo DC. Radiofrequency coil design for in vivo sodium magnetic resonance imaging of mouse kidney at 9.4 T. Investig Magn Reson Imaging. 2018;22:65-70 https://doi.org/10.13104/imri.2018.22.1.65
  110. Han SD, Heo P, Kim HJ, et al. Double-layered dual-tuned RF coil using frequency-selectable PIN-diode control at 7-T MRI. Concepts Magn Reson Part B 2017;47B:e21363 https://doi.org/10.1002/cmr.b.21363
  111. Gruber B, Froeling M, Leiner T, Klomp DWJ. RF coils: a practical guide for nonphysicists. J Magn Reson Imaging 2018;48:590-604 https://doi.org/10.1002/jmri.26187
  112. Paska J, Cloos MA, Wiggins GC. A rigid, stand-off hybrid dipole, and birdcage coil array for 7 T body imaging. Magn Reson Med 2018;80:822-832 https://doi.org/10.1002/mrm.27048
  113. Elabyad IA, Herrmann T, Bernarding J, Omar A. Combination of travelling wave approach and microstrip transceiver coil arrays for MRI at 7T. In 2011 IEEE MTT-S International Microwave Symposium, 2011:1-4
  114. Zaaraoui W, Deloire M, Merle M, et al. Monitoring demyelination and remyelination by magnetization transfer imaging in the mouse brain at 9.4 T. MAGMA 2008;21:357-362 https://doi.org/10.1007/s10334-008-0141-3
  115. Lee SH, Barg JS, Yeo SJ, Lee SK. High-resolution numerical simulation of respiration-induced dynamic B0 shift in the head in high-field MRI. Investig Magn Reson Imaging 2019;23:38-45 https://doi.org/10.13104/imri.2019.23.1.38

Cited by

  1. Artifact Reduction in Compressed Sensing Averaging Techniques for High-Resolution Magnetic Resonance Images vol.11, pp.21, 2020, https://doi.org/10.3390/app11219802