DOI QR코드

DOI QR Code

LS-DYNA 발파 모델링에서 현장암반의 특성을 반영하기 위한 Hoek-Brown 파괴기준과 Holmquist-Johnson-Cook 콘크리트 재료모델의 접목

Integrating the Hoek-Brown Failure Criterion into the Holmquist-Johnson-Cook Concrete Material Model to Reflect the Characteristics of Field Rock Mass in LS-DYNA Blast Modeling

  • 투고 : 2020.09.22
  • 심사 : 2020.09.25
  • 발행 : 2020.09.30

초록

본 논문에서는 Hoek-Brown (HB) 파괴기준을 Holmquist-Johnson-Cook (HJC) 콘크리트 재료모델에 접목시킴으로써 LS-DYNA 상에서 암반발파를 모델링할 때 현장암반의 고유한 특성이 잘 반영될 수 있도록 도모하였다. 이것은 많은 지질학적 불연속면을 포함하고 있는 현장암반이 지니고 있는 독특한 특징을 강조하기 위함이다. 두 모델의 접목은 HB 파괴기준으로 HJC 재료모델의 정적 강도 부분을 교체함으로써 이루어지며, 교체과정은 통계학적 곡선적합 기법에 의해 수행된다. 본 논문에서는 접목의 과정이 상세하게 소개되며, 획득된 HJC 재료모델의 사용에 대한 실례도 제시된다. 제시된 수치계산은 현장의 석회암 암반의 단일공 발파에 대한 평면변형률 모델링으로서 LS-DYNA가 제공하는 유체-구조물 상호작용(FSI) 기법과 다중재료 라그랑주-오일러(MMALE) 정식화 기법을 조합하여 수행된다.

In this paper the Hoek-Brown (HB) failure criterion is integrated into the Holmquist-Johnson-Cook (HJC) concrete material model to reflect the inherent characteristics of field rock masses in LS-DYNA blast modeling. This is intended to emphasize the distinctive characteristics of field rock masses that usually have many geological discontinuities. The replacement is made only for the static strength part of the HJC material model by using a statistical curve fitting technique, and its procedure is described in detail. An example is also given to illustrate the use of the obtained HJC material model. Computation is performed for a plane strain model of a single-hole blasting on a field limestone by using the combination of the fluid-structure interaction (FSI) technique and the multi-material arbitrary Lagrangian Eulerian (MMALE) method in LS-DYNA.

키워드

참고문헌

  1. 김교원, 김수정, 2006, 한반도의 암종별 공학적 특성의 상관성 분석, J. Eng. Geology, Vol.16, No.1, pp.59-68. https://doi.org/10.3969/j.issn.1004-9665.2008.01.012
  2. Hoek, E. and E.T. Brown, 1980, Underground Excavation in Rock.
  3. Hoek E., D. Wood and S. Sha, 1992, A modified Hoek-Brown criterion for jointed rock masses. Rock Characterization. Proceedings of ISRM Symposium EUROCK'92 (ed. J. Hudson), Chester, UK, pp. 209-213. British Geotechnical Society, London.
  4. Hoek, E., P. K. Kaiser and W. F. Bawden, 1995, Support of Underground Excavations in Hard Rock. Rotterdam: Balkema, p.215.
  5. Hoek, E., C. Torres and B. Corkum, 2002, Hoek-Brown failure criterion - 2002 edition, Rocscience Inc.. Canada.
  6. Hoek E. and M. S. Diederichs, 2006, Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Science, vol. 43(2), pp.203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005
  7. Holmquist, T. J., G. R. Johnson and W. H. Cook, 1993, "A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures", Proceedings 14th Int. Symp. on Ballistics, Quebec, Canada, pp.591-600.
  8. Ma, G. W. and X. M. An, 2008, Numerical simulation of blasting-induced rock fractures, Int. J. of Rock Mechanics and Mining Sciences, Vol. 45, pp.966-975. https://doi.org/10.1016/j.ijrmms.2007.12.002
  9. Yi, Changpin, 2013, Improved blasting results with precise initiation - Numerical simulation of sublevel caving blasting, Swebrec Report 2013:3, Swedish Blasting Research Centre, Stockholm, p.8.