References
- Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
- Chatterjee, S., Das, S., Chakraborty, P., Manna, A., Chatterjee, M., and Choudhuri, S.K. (2013). Myeloid derived suppressor cells (MDSCs) can induce the generation of Th17 response from naive CD4+ T cells. Immunobiology 218, 718-724. https://doi.org/10.1016/j.imbio.2012.08.271
- Chen, S., Zhang, Y., Kuzel, T.M., and Zhang, B. (2015). Regulating tumor myeloid-derived suppressor cells by microRNAs. Cancer Cell Microenviron. 2, e637.
- Chen, X., Wang, A., and Yue, X. (2018). miR-449c inhibits migration and invasion of gastric cancer cells by targeting PFKFB3. Oncol. Lett. 16, 417-424.
- Chomarat, P., Banchereau, J., Davoust, J., and Palucka, A.K. (2000). IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat. Immunol. 1, 510-514. https://doi.org/10.1038/82763
- Condamine, T., Mastio, J., and Gabrilovich, D.I. (2015). Transcriptional regulation of myeloid-derived suppressor cells. J. Leukoc. Biol. 98, 913-922. https://doi.org/10.1189/jlb.4RI0515-204R
- De Tullio, G., De Fazio, V., Sgherza, N., Minoia, C., Serrati, S., Merchionne, F., Loseto, G., Iacobazzi, A., Rana, A., Petrillo, P., et al. (2014). Challenges and opportunities of microRNAs in lymphomas. Molecules 19, 14723-14781. https://doi.org/10.3390/molecules190914723
- El Gazzar, M. (2014). microRNAs as potential regulators of myeloidderived suppressor cell expansion. Innate Immun. 20, 227-38. https://doi.org/10.1177/1753425913489850
- Friedman, A.D. (2015). C/EBPalpha in normal and malignant myelopoiesis. Int. J. Hematol. 101, 330-341. https://doi.org/10.1007/s12185-015-1764-6
- Gabrilovich, D.I., Ostrand-Rosenberg, S., and Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253-268. https://doi.org/10.1038/nri3175
- Goddard, S., Youster, J., Morgan, E., and Adams, D.H. (2004). Interleukin-10 secretion differentiates dendritic cells from human liver and skin. Am. J. Pathol. 164, 511-519. https://doi.org/10.1016/S0002-9440(10)63141-0
- Halliday, G.M. and Le, S. (2001). Transforming growth factor-beta produced by progressor tumors inhibits, while IL-10 produced by regressor tumors enhances, Langerhans cell migration from skin. Int. Immunol. 13, 1147-1154. https://doi.org/10.1093/intimm/13.9.1147
- Han, X., Shi, H., Sun, Y., Shang, C., Luan, T., Wang, D., Ba, X., and Zeng, X. (2019). CXCR2 expression on granulocyte and macrophage progenitors under tumor conditions contributes to mo-MDSC generation via SAP18/ERK/STAT3. Cell Death Dis. 10, 598. https://doi.org/10.1038/s41419-019-1837-1
- Hoechst, B., Voigtlaender, T., Ormandy, L., Gamrekelashvili, J., Zhao, F., Wedemeyer, H., Lehner, F., Manns, M.P., Greten, T.F., and Korangy, F. (2009). Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50, 799-807. https://doi.org/10.1002/hep.23054
- Hong, S.H., Kim, K.S., and Oh, I.H. (2015). Concise review: exploring miRNAs--toward a better understanding of hematopoiesis. Stem Cells 33, 1-7. https://doi.org/10.1002/stem.1810
- Jayakumar, A. and Bothwell, A. (2017). Stat6 promotes intestinal tumorigenesis in a mouse model of adenomatous polyposis by expansion of MDSCs and inhibition of cytotoxic CD8 response. Neoplasia 19, 595-605. https://doi.org/10.1016/j.neo.2017.04.006
- Jing, H., Vassiliou, E., and Ganea, D. (2003). Prostaglandin E2 inhibits production of the inflammatory chemokines CCL3 and CCL4 in dendritic cells. J. Leukoc. Biol. 74, 868-879. https://doi.org/10.1189/jlb.0303116
- Kim, M., Civin, C.I., and Kingsbury, T.J. (2019). MicroRNAs as regulators and effectors of hematopoietic transcription factors. Wiley Interdiscip. Rev. RNA 10, e1537.
- Ko, J.S., Zea, A.H., Rini, B.I., Ireland, J.L., Elson, P., Cohen, P., Golshayan, A., Rayman, P.A., Wood, L., Garciaet, L., et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148-2157. https://doi.org/10.1158/1078-0432.CCR-08-1332
- Leon-Cabrera, S.A., Molina-Guzman, E., Delgado-Ramirez, Y.G., VázquezSandoval, A., Ledesma-Soto, Y., Pérez-Plasencia, C.G., Chirino, Y.I., DelgadoBuenrostro, N.L., Rodríguez-Sosa, M., Vaca-Paniagua, F., et al. (2017). Lack of STAT6 attenuates inflammation and drives protection against early steps of colitis-associated colon cancer. Cancer Immunol. Res. 5, 385-396. https://doi.org/10.1158/2326-6066.CIR-16-0168
- Majumder, M., Landman, E., Liu, L., Hess, D., and Lala, P.K. (2015). COX2 elevates oncogenic miR-526b in breast cancer by EP4 activation. Mol. Cancer Res. 13, 1022-1033. https://doi.org/10.1158/1541-7786.MCR-14-0543
- Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., Ugel, S., Sonda, N., Bicciato, S., Falisi, E., et al. (2010). Tumor- induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32, 790-802. https://doi.org/10.1016/j.immuni.2010.05.010
- Miao, L.J., Huang, S.F., Sun, Z.T., Gao, Z.Y., Zhang, R.X., Liu, Y., and Wang, J. (2013). MiR-449c targets c-Myc and inhibits NSCLC cell progression. FEBS Lett. 587, 1359-1365. https://doi.org/10.1016/j.febslet.2013.03.006
- Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., Baetselier, P.D., and Ginderachter J.A. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111, 4233-4244. https://doi.org/10.1182/blood-2007-07-099226
- Munera, V., Popovic, P.J., Bryk, J., Pribis, J., Caba, D., Matta, B.M., Zenati, M., and Ochoa, J.B. (2010). Stat 6-dependent induction of myeloid derived suppressor cells after physical injury regulates nitric oxide response to endotoxin. Ann. Surg. 251, 120-126. https://doi.org/10.1097/SLA.0b013e3181bfda1c
- Nagaraj, S. and Gabrilovich, D.I. (2010). Myeloid-derived suppressor cells in human cancer. Cancer J. 16, 348-353. https://doi.org/10.1097/PPO.0b013e3181eb3358
- Ostrand-Rosenberg, S. and Sinha, P. (2009). Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182, 4499-4506. https://doi.org/10.4049/jimmunol.0802740
- Poh, T.W., Bradley, J.M., Mukherjee, P., and Gendler, S.J. (2009). Lack of Muc1-regulated beta-catenin stability results in aberrant expansion of CD11b+Gr1+ myeloid-derived suppressor cells from the bone marrow. Cancer Res. 69, 3554-3562. https://doi.org/10.1158/0008-5472.CAN-08-3806
- Raber, P.L., Thevenot, P., Sierra, R., Wyczechowska, D., Halle, D., Cheng, P.Y., Villagra, A., Antonia, S., McCaffrey, J.C., Fishman, M., et al. (2014). Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int. J. Cancer 134, 2853-2864. https://doi.org/10.1002/ijc.28622
- Ren, X., Bai, X., Zhang, X., Li, Z., Tang, L., Zhao, Y.X., Li, Z.Y., Ren, Y.F., Wei, S.C., Wang, Q.S., et al. (2015). Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells. Mol. Cell. Proteomics 14, 316-328. https://doi.org/10.1074/mcp.M114.041905
- Roth, F., De La Fuente, A.C., Vella, J.L., Zoso, A., Inverardi, L., and Serafini, P. (2012). Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumor progression. Cancer Res. 72, 1373-1383. https://doi.org/10.1158/0008-5472.CAN-11-2772
- Saki, N., Abroun, S., Soleimani, M., Hajizamani, S., Shahjahani, M., Kast, R.E., and Mortazavi, Y. (2015). Involvement of microRNA in T- cell differentiation and malignancy. Int. J. Hematol. Oncol. Stem Cell Res. 9, 33-49.
- Sandbothe, M., Buurman, R., Reich, N., Greiwe, L., Vajen B., Gürlevik, E., Schäffer, V., Eilers, M., Kühnel, F., Vaquero, A., et al. (2017). The microRNA-449 family inhibits TGF-beta-mediated liver cancer cell migration by targeting SOX4. J. Hepatol. 66, 1012-1021. https://doi.org/10.1016/j.jhep.2017.01.004
- Shi, H., Han, X., Sun, Y., Shang, C., Wei, M., Ba, X., and Zeng, X. (2018). Chemokine (C-X-C motif) ligand 1 and CXCL2 produced by tumor promote the generation of monocytic myeloid-derived suppressor cells. Cancer Sci. 109, 3826-3839. https://doi.org/10.1111/cas.13809
- Wang, J., De Veirman, K., De Beule, N., Maes, K., De Bruyne, E., Vanderkerken, K., and Menu, E. (2015). The bone marrow microenvironment enhances multiple myeloma progression by exosomemediated activation of myeloid-derived suppressor cells. Oncotarget 6,43992-44004. https://doi.org/10.18632/oncotarget.6083
- Wang, J., Su, X., Yang, L., Qiao, F., Fang, Y., Fang, F., Yu, L., Yang, Q., Wang, Y.Y., Yin, Y.F., et al. (2016). The influence of myeloid- derived suppressor cells on angiogenesis and tumor growth after cancer surgery. Int. J. Cancer 138, 2688-2699. https://doi.org/10.1002/ijc.29998
- Wu, J., Bao, J., Kim, M., Yuan, S., Tang, C., Zheng, H., Mastick, G.S., Xu, C., and Yan, W. (2014). Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc. Natl. Acad. Sci. U. S. A. 111, E2851-E2857. https://doi.org/10.1073/pnas.1407777111
- Ye, X.Z., Yu, S.C., and Bian, X.W. (2010). Contribution of myeloid- derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis. J. Genet. Genomics 37, 423- 430. https://doi.org/10.1016/S1673-8527(09)60061-8
- Youn, J.I., Kumar, V., Collazo, M., Nefedova, Y., Condamine, T., Cheng, P., Villagra, A., Antonia, S., McCaffrey, J.C., Fishmanet, M., et al. (2013). Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat. Immunol. 14, 211-220. https://doi.org/10.1038/ni.2526
- Zang, W., Wang, Y., Wang, T., Du, Y., Chen, X., Li, M., and Zhao, G.Q. (2015). miR-663 attenuates tumor growth and invasiveness by targeting eEF1A2 in pancreatic cancer. Mol. Cancer 14, 37. https://doi.org/10.1186/s12943-015-0315-3
Cited by
- Transforming growth factor‐beta1 and myeloid‐derived suppressor cells: A cancerous partnership vol.251, pp.1, 2020, https://doi.org/10.1002/dvdy.339