• Title/Summary/Keyword: STAT6

Search Result 230, Processing Time 0.031 seconds

IL-4 Independent Nuclear Translocalization of STAT6 in HeLa Cells by Entry of Toxoplasma gondii

  • Ahn, Hye-Jin;Kim, Ji-Yeon;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • Toxoplasma gondii provokes rapid and sustained nuclear translocation of the signal transducer and activator of transcription 6 (STAT6) in HeLa cells. We observed activation of STAT6 as early as 2hr after infection with T. gondii by the nuclear translocation of fluorescence expressed from exogenously transfected pDsRed2-STAT6 plasmid and by the detection of phosphotyrosine-STAT6 in Western blot. STAT6 activation occurred only by infection with live tachyzoites but not by co-culture with killed tachyzoites or soluble T. gondii extracts. STAT6 phosphorylation was inhibited by small interfering RNA of STAT6 (siSTAT6). In view of the fact that STAT6 is a central mediator of IL-4 induced gene expression, activation of STAT6 by T. gondii infection resembles that infected host cells has been stimulated by IL-4 treatment. STAT1 was affected to increase the transcription and expression by the treatment of siSTAT6. STAT6 activation was not affected by any excess SOCS's whereas that with IL-4 was inhibited by SOCS-1 and SOCS-3. T. gondii infection induced Eotaxin-3 gene expression which was reduced by $IFN-{\gamma}$. These results demonstrate that T. gondii exploits host STAT6 to take away various harmful reactions by $IFN-{\gamma}$. This shows, for the first time, IL-4-like action by T. gondii infection modulates microbicidal action by $IFN-{\gamma}$ in infected cells.

Extracellular Signal-regulated Kinase Activation Is Required for Serine 727 Phosphorylation of STAT3 in Schwann Cells in vitro and in vivo

  • Lee, Hyun-Kyoung;Jung, Jun-Yang;Lee, Sang-Hwa;Seo, Su-Yeong;Suh, Duk-Joon;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.161-168
    • /
    • 2009
  • In the peripheral nerves, injury-induced cytokines and growth factors perform critical functions in the activation of both the MEK/ERK and JAK/STAT3 pathways. In this study, we determined that nerve injury-induced ERK activation was temporally correlated with STAT3 phosphorylation at the serine 727 residue. In cultured Schwann cells, we noted that ERK activation is required for the serine phosphorylation of STAT3 by neuropoietic cytokine interleukin-6 (IL-6). Serine phosphorylated STAT3 by IL-6 was transported into Schwann cell nuclei, thereby indicating that ERK may regulate the transcriptional activity of STAT3 via the induction of serine phosphorylation of STAT3. Neuregulin-1 (NRG) also induced the serine phosphorylation of STAT3 in an ERK-dependent fashion. In contrast with the IL-6 response, serine phosphorylated STAT3 induced by NRG was not detected in the nucleus, thus indicating the non-nuclear function of serine phosphorylated STAT3 in response to NRG. Finally, we determined that the inhibition of ERK prevented injury-induced serine phosphorylation of STAT3 in an ex-vivo explants culture of the sciatic nerves. Collectively, the results of this study show that ERK may be an upstream kinase for the serine phosphorylation of STAT3 induced by multiple stimuli in Schwann cells after peripheral nerve injury.

STAT mRNA kinetics in the central nervous system during autoimmune encephalomyelitis in lewis rats

  • Jee, Young-heun;Hwang, In-sun;Shin, Tae-kyun;Moon, Chang-jong;Lim, Yoon-kyu;Yeo, In-kyu;Son, Hwa-young
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.163-169
    • /
    • 2004
  • To elucidate the molecular mechanisms of autoimmune inflammation in the central nervous system, we examined the expression and localization of STAT1, STAT3, STAT4 and STAT6 molecules during experimental autoimmune encephalomyelitis (EAE) by competitive PCR. In the present study, we quantitated IL-4 and IL-12 p40 mRNA by competitive PCR in the CNS during EAE. IL-4 mRNA was found at early and peak stages. On the other hand, the IL-12 p40 mRNA level reached maximal levels at the peak stage and still found at the recovery stage of the disease. We examined the kinetics of STAT mRNA in the CNS during EAE and demonstrated that STAT1 and STAT4 mRNA reached a maximal level at the peak stage of EAE, whereas STAT3 mRNA level increased gradually to the recovery stage. STAT6 mRNA increased rapidly at the early stage followed by gradual decrease till the recovery stage. Taken together, these findings suggest that STAT4 which was probably activated by IL-12 plays a pro-inflammatory role and that STAT3 which was activated throughout the disease course seems to serve as a transducer of anti-inflammatory signals.

Expression and Clinical Significance of STAT3, P-STAT3, and VEGF-C in Small Cell Lung Cancer

  • Zhao, Xue;Sun, Xian;Li, Xiao-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2873-2877
    • /
    • 2012
  • Objective: To determine STAT3, P-STAT3, and VEGF-C expression levels in small cell lung cancers (SCLCs), and discuss their role and clinical significance in SCLC development. Method: Immunohistochemical methods were applied to 128 cases of SCLC and 40 cases of adjacent normal tissue. Results: The expression levels of STAT3, P-STAT3, and VEGF-C were higher in SCLC than in normal tissue (P<0.05). Pairwise comparisons showed positive correlations with lymph node metastasis, clinical stage, and tumor size (P<0.05). The expression levels were also related with the overall survival rates. Conclusion: STAT3 and VEGF-C play important roles in the development of SCLC, and might be expected to become new targets for SCLC treatment.

Regulation of signal transducer and activator of transcription 3 activation by dual-specificity phosphatase 3

  • Kim, Ba Reum;Ha, Jain;Kang, Eunjeong;Cho, Sayeon
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.335-340
    • /
    • 2020
  • Since cancer is the leading cause of death worldwide, there is an urgent need to understand the mechanisms underlying cancer progression and the development of cancer inhibitors. Signal transducer and activator of transcription 3 (STAT3) is a major transcription factor that regulates the proliferation and survival of various cancer cells. Here, dual-specificity phosphatase 3 (DUSP3) was identified as a regulator of STAT3 based on an interaction screening performed using the protein tyrosine phosphatase library. DUSP3 interacted with the C-terminal domain of STAT3 and dephosphorylated p-Y705 of STAT3. In vitro dephosphorylation assay revealed that DUSP3 directly dephosphorylated p-STAT3. The suppressive effects of DUSP3 on STAT3 were evaluated by a decreased STAT3-specific promoter activity, which in turn reduced the expression of the downstream target genes of STAT3. In summary, DUSP3 downregulated the transcriptional activity of STAT3 via dephosphorylation at Y705 and also suppressed the migratory activity of cancer cells. This study demonstrated that DUSP3 inhibits interleukin 6 (IL-6)/STAT3 signaling and is expected to regulate cancer development. Novel functions of DUSP3 discovered in IL-6/STAT3 signaling regulation would help expand the understanding of cancer development mechanisms.

STAT6 Gene Polymorphisms in Allergic Rhinitis

  • Kim, Jeong Joong;Kim, Min Su;Lee, Jung Hun;Choi, Tae Wook;Choi, Sang Heon;Lee, Jae Hoon;Chung, Hun Taeg
    • Genomics & Informatics
    • /
    • v.2 no.3
    • /
    • pp.126-130
    • /
    • 2004
  • T helper-type 2 cytokines, such as IL-4 and IL-13, may play a central role in allergic diseases. The protein known as signal transducers and activators of transcription 6 (STAT6) is a key transcription factor involved in both IL-4- and -13-mediated biological responses. Two polymorphisms of the STAT 6 gene (exon 1 and G2964A variant) have been found. We investigated whether these STAT6 gene polymorph isms were associated with allergic rhinitis. Blood samples for genetic analysis were obtained from 285 individuals with allergic rhinitis and from 271 healthy subjects without atopic disease. The G2964A variant of the STAT6 gene was genotyped using PCR-RFLP analysis. The GT repeat polymorphism in exon 1 of the STAT6 gene was genotyped by fragment analysis. There was no association between the 2964A variant and GT repeat polymorphism in exon 1 of the STAT6 and allergic rhinitis in a Korean population (both p > 0.05). Our results suggest that a combination of STAT6 gene polymorphisms is not a useful marker for predicting allergic rhinitis.

Protective Effect of Niclosamide on Lipopolysaccharide-induced Sepsis in Mice by Modulating STAT3 Pathway (니클로사마이드를 이용한 STAT3 신호전달 조절을 통해 LPS로 유발된 패혈증 동물모델 보호 효과 검증 연구)

  • Se Gwang JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2023
  • Sepsis is a systemic inflammatory response, with manifestations in multiple organs by pathogenic infection. Currently, there are no promising therapeutic strategies. Signal transducer and activator of transcription 3 (STAT3) is a cell signaling transcription factor. Niclosamide is an anti-helminthic drug approved by the Food and Drug Administration (FDA) as a potential STAT3 inhibitor. C57BL/6 mice were treated with an intraperitoneal injection of lipopolysaccharide (LPS). Niclosamide was administered orally 2 hours after the LPS injection. This study found that Niclosamide improved the survival and lung injury of LPS-induced mice. Niclosamide decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) in serum. The effects of Niclosamide on phosphoinositide 3-kinase (PI3K), AKT, nuclear factor-κB (NF-κB), and STAT3 signaling pathways were determined in the lung tissue by immunoblot analysis. Niclosamide reduced phosphorylation of PI3K, AKT, NF-κB, and STAT3 significantly. Furthermore, it reduced the phosphorylation of STAT3 by LPS stimulation in RAW 264.7 macrophages. Niclosamide also reduced the LPS-stimulated expression of proinflammatory mediators, including IL-6, TNF-α, and IL-1β. Niclosamide provides a new therapeutic strategy for murine sepsis models by suppressing the inflammatory response through STAT3 inhibition.

Afatinib Reduces STAT6 Signaling of Host ARPE-19 Cells Infected with Toxoplasma gondii

  • Yang, Zhaoshou;Ahn, Hye-Jin;Park, Young-Hoon;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • Specific gene expressions of host cells by spontaneous STAT6 phosphorylation are major strategy for the survival of intracellular Toxoplasma gondii against parasiticidal events through STAT1 phosphorylation by infection provoked $IFN-{\gamma}$. We determined the effects of small molecules of tyrosine kinase inhibitors (TKIs) on the growth of T. gondii and on the relationship with STAT1 and STAT6 phosphorylation in ARPE-19 cells. We counted the number of T. gondii RH tachyzoites per parasitophorous vacuolar membrane (PVM) after treatment with TKIs at 12-hr intervals for 72 hr. The change of STAT6 phosphorylation was assessed via western blot and immunofluorescence assay. Among the tested TKIs, Afatinib (pan ErbB/EGFR inhibitor, $5{\mu}M$) inhibited 98.0% of the growth of T. gondii, which was comparable to pyrimethamine ($5{\mu}M$) at 96.9% and followed by Erlotinib (ErbB1/EGFR inhibitor, $20{\mu}M$) at 33.8% and Sunitinib (PDGFR or c-Kit inhibitor, $10{\mu}M$) at 21.3%. In the early stage of the infection (2, 4, and 8 hr after T. gondii challenge), Afatinib inhibited the phosphorylation of STAT6 in western blot and immunofluorescence assay. Both JAK1 and JAK3, the upper hierarchical kinases of cytokine signaling, were strongly phosphorylated at 2 hr and then disappeared entirely after 4 hr. Some TKIs, especially the EGFR inhibitors, might play an important role in the inhibition of intracellular replication of T. gondii through the inhibition of the direct phosphorylation of STAT6 by T. gondii.

Role of STAT3 as a Molecular Adaptor in Cell Growth Signaling: Interaction with Ras and other STAT Proteins

  • Song, Ji-Hyon;Park, Hyon-Hee;Park, Hee-Jeong;Han, Mi-Young;Kim, Sung-Hoon;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.484-488
    • /
    • 2001
  • STATs are proteins with a dual function: signal transducers in the cytoplasm and transcriptional activators in the nucleus. Among the six known major STATs (STAT1-6), STAT3 has been implicated in the widest range of signaling pathways that regulate cell growth and differentiation. As a part of our on-going investigation on the pleiotropic functions of STAT proteins, we examined the role of STAT3 as a molecular adaptor that links diverse cell growth signaling pathways. We observed that STAT3 can be specifically activated by multiple cytokines, such as IL-3, in transformed fibroblasts and IL-4 or IFN-$\gamma$ in primary immune cells, respectively. The selective activation of STAT3 in H-ras-transformed NIH3T3 cells is associated with an increased expression of phosphoserioe STAT3 in these cells, compared to the parental cells. Notably phosphoresine-STAT3 interacts with oncogenic ras, shown by immunoprecipitation and Western blots. The results suggest the role of STAT3 in rasinduced cellular transformation as a molecular adaptor linking the Jak/STAT and Ras/MAPK pathways. In primary immune cells, IL-4 and IFN-$\gamma$ each induced (in addition to the characteristic STAT6 and STAT1 homodimers) the formation of STAT3-containing complexes that bind to GAS probes, which correspond to the $Fe{\varepsilon}$ Rll and $Fe{\gamma}$ RI promoter sequences, respectively. Since IL-4 and IFN-$\gamma$ are known to counter-regulate the expression of these genes, the ability of STAT3 to form heterodimeric complexes with STAT6 or STAT1 implies its role in the fine-tuned control of genes that are regulated by IL-4 and IFN-$\gamma$.

  • PDF

STAT3 is Activated in a Subset of Benign and Malignant Chondroid Tumors (양성 및 악성 연골 종양에서의 STAT3 활성화)

  • Park, Hye-Rim;Park, Yong-Koo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.15 no.2
    • /
    • pp.130-137
    • /
    • 2009
  • Purpose: STAT3 is an oncogene that regulates critical cellular processes, and its constitutive activation has been demonstrated to correlate with biological and clinical features in many types of human malignancy. Materials and Methods: In this study, STAT3 activation was assessed in variable benign and malignant chondroid tumors in bone by immunohistochemistry using a monoclonal antibody specific for $tyrosine^{705}$-phosphorylated STAT3 ($pSTAT3^{tyr705}$). Results: Among conventional chondrosarcomas (n=17), three cases(50%) of grade III chondrosarcomas were pSTAT3-positive. All grade I and II chondrosarcomas were pSTAT3-negative. This pSTAT3 positivity according to the histologic grade was statistically significant (p=0.0432). Two cases(50%) of clear cell chondrosarcomas were pSTAT3-positive. Six cases (50%) among 12 benign chondroid tumors(6 enchondromas, 3 chondroblastomas, and 3 chondromyxoid fibromas) were also $pSTAT3^{tyr705}$-positive. Conclusion: In conclusion, STAT3 activation is associated with higher tumor grade in conventional chondrosarcomas. Our results suggest that STAT3 is activated in a subset of benign and malignant chondroid tumors, and may support the extension of the cancer stem cell hypothesis to include tumors of cartilaginous lineage.

  • PDF