DOI QR코드

DOI QR Code

Damped dynamic responses of a layered functionally graded thick beam under a pulse load

  • Asiri, Saeed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University) ;
  • Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • Received : 2020.03.03
  • Accepted : 2020.04.14
  • Published : 2020.09.25

Abstract

This article aims to illustrate the damped dynamic responses of layered functionally graded (FG) thick 2D beam under dynamic pulse sinusoidal load by using finite element method, for the first time. To investigate the response of thick beam accurately, two-dimensional plane stress problem is assumed to describe the constitutive behavior of thick beam structure. The material is distributed gradually through the thickness of each layer by generalized power law function. The Kelvin-Voigt viscoelastic constitutive model is exploited to include the material internal damping effect. The governing equations are obtained by using Lagrange's equations and solved by using finite element method with twelve -node 2D plane element. The dynamic equation of motion is solved numerically by Newmark implicit time integration procedure. Numerical studies are presented to illustrate stacking sequence and material gradation index on the displacement-time response of cantilever beam structure. It is found that, the number of waves increases by increasing the graduation distribution parameter. The presented mathematical model is useful in analysis and design of nuclear, marine, vehicle and aerospace structures those manufactured from functionally graded materials (FGM).

Keywords

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (G-083-135-1441). The authors, therefore, gratefully acknowledge DSR technical and financial support.

References

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A. A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489
  2. Addou, F. Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347
  3. Akbas, S. D. (2017a), "Forced vibration analysis of functionally graded nanobeams", J. Appl. Mech., 9(07), 1750100. https://doi.org/10.1142/S1758825117501009
  4. Akbas, S. D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013
  5. Akbas, S. D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259
  6. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  7. Alshorbagy, A. E., Eltaher, M. A. and Mahmoud, F. F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Modell., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
  8. Apetre, N. A., Sankar, B. V. and Ambur, D. R. (2006), "Low-velocity impact response of sandwich beams with functionally graded core", J. Solids Struct., 43(9), 2479-2496. https://doi.org/10.1016/j.ijsolstr.2005.06.003
  9. Asghar, S., Naeem, M. N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133. https://doi.org/10.12989/cac.2020.25.2.133
  10. Avila, A. F. (2007), "Failure mode investigation of sandwich beams with functionally graded core", Compos. Struct., 81(3), 323-330. https://doi.org/10.1016/j.compstruct.2006.08.030
  11. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S. R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
  12. Bedia, W. A., Houari, M. S. A., Bessaim, A., Bousahla, A. A., Tounsi, A., Saeed, T. and Alhodaly, M. S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175
  13. Belabed, Z., Bousahla, A. A., Houari, M. S. A., Tounsi, A. and Mahmoud, S. R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103
  14. Belbachir, N., Draich, K., Bousahla, A. A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081
  15. Bellal, M., Hebali, H., Heireche, H., Bousahla, A. A., Tounsi, A., Bourada, F., ... & Tounsi, A, (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643. https://doi.org/10.12989/scs.2020.34.5.643
  16. Berghouti, H., Adda Bedia, E. A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351
  17. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A. A., Bourada, M., Tounsi, A. and Al-Osta, M. A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503
  18. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A. A., Tounsi, A. and Mahmoud, S. R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161
  19. Boutaleb, S., Benrahou, K. H., Bakora, A., Algarni, A., Bousahla, A. A., Tounsi, A. and Mahmoud, S. R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191. https://doi.org/10.12989/anr.2019.7.3.191
  20. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A. A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197. https://doi.org/10.12989/sss.2020.25.2.197
  21. Chikr, S. C., Kaci, A., Yeghnem, R. and Tounsi, A. (2019), "A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates", Struct. Eng. Mech., 72(5), 653-673. https://doi.org/10.12989/sem.2019.72.5.653
  22. Daikh, A. A., Guerroudj, M., El Adjrami, M. and Megueni, A. (2020), "Thermal Buckling of Functionally Graded Sandwich Beams", Adv. Mater. Res., 1156, 43-59. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.1156.43.
  23. Draiche, K., Bousahla, A. A., Tounsi, A., Alwabli, A. S., Tounsi, A. and Mahmoud, S. R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369
  24. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  25. Dash, S., Mehar, K., Sharma, N., Mahapatra, T. R. and Panda, S. K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
  26. Ebrahimi, F. and Farazmandnia, N. (2018), "Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment", Adv. Aircraft Spacecraft Sci., 5(1), 107. https://doi.org/10.12989/aas.2018.5.1.107.
  27. Ebrahimi, F., Fardshad, R. E. and Mahesh, V. (2019), "Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391. https://doi.org/10.12989/anr.2019.7.6.391.
  28. Eltaher, M. A., A. A. Abdelrahman, A. Al-Nabawy, M. Khater, and A. Mansour, (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028
  29. Eltaher, M. A., Attia, M. A., Soliman, A. E. and Alshorbagy, A. E. (2018), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097
  30. Eltaher, M.A. and Akbas, S.D (2020), "Transient Response of 2D Functionally Graded Beam Structure", Struct. Eng. Mech., 75, https://doi.org/10.12989/sem.2020.75.3.357.
  31. Eltaher, M. A., Omar, F. A., Abdraboh, A. M., Abdalla, W. S. and Alshorbagy, A.E. (2020a), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219. https://doi.org/10.12989/sss.2020.25.2.219
  32. Eltaher, M. A., Mohamed, S. A. and Melaibari, A. (2020b), "Static stability of a unified composite beams under varying axial loads", Thin-Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
  33. Eltaher, M. A. and Mohamed, S. A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241. https://doi.org/10.12989/scs.2020.34.2.241.
  34. Emam, S., Eltaher, M., Khater, M. and Abdalla, W. (2018), "Postbuckling and Free Vibration of Multilayer Imperfect Nanobeams under a Pre-Stress Load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238.
  35. Etemadi, E., Khatibi, A. A. and Takaffoli, M. (2009), "3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact", Compos. Struct., 89(1), 28-34. https://doi.org/10.1016/j.compstruct.2008.06.013
  36. Esmaeili, M. and Tadi Beni, Y. (2019), "Vibration and Buckling Analysis of Functionally Graded Flexoelectric Smart Beam", J. Appl. Comput. Mech., 5(5), https://doi/900-917.10.22055/JACM.2019.27857.1439
  37. Fan, Y., Xiang, Y., Shen, H. S. and Wang, H. (2018), "Low-velocity impact response of FG-GRC laminated beams resting on visco-elastic foundations", J. Mech. Sci., 141, 117-126. https://doi.org/10.1016/j.ijmecsci.2018.04.007.
  38. Gardner, N., Wang, E. and Shukla, A. (2012), "Performance of functionally graded sandwich composite beams under shock wave loading", Compos. Struct., 94(5), 1755-1770. https://doi.org/10.1016/j.compstruct.2011.12.006
  39. Hamed, M. A., Sadoun, A. M. and Eltaher, M. A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089
  40. Hamed M.A., Mohamed, S.A., Eltaher, M.A., (2020), "Buckling Analysis of Sandwich Beam Rested on Elastic Foundation and Subjected to Varying Axial In-Plane Loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  41. Huang, Y. and Ouyang, Z. Y. (2020), "Exact solution for bending analysis of two-directional functionally graded Timoshenko beams", ARch. Appl. Mech., 1-19. https://doi.org/10.1007/s00419-019-01655-5
  42. Hussain, M., Naeem, M. N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431. https://doi.org/10.12989/anr.2019.7.6.431
  43. Javani, M., Kiani, Y. and Eslami, M. R. (2019), "Free vibration of arbitrary thick FGM deep arches using unconstrained higher-order shear deformation theory", Thin-Walled Struct., 136, 258-266. https://doi.org/10.1016/j.tws.2018.12.020
  44. Kaddari, M., Kaci, A., Bousahla, A. A., Tounsi, A., Bourada, F., Bedia, E. A. and Al-Osta, M. A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis", Comput. Concrete, 25(1), 37. https://doi.org/10.12989/cac.2020.25.1.037
  45. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
  46. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055
  47. Karami, B., Janghorban, M. and Tounsi, A. (2019c), "On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487
  48. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019d), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
  49. Karami, B., Janghorban, M. and Tounsi, A. (2019e), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazilian Soc. Mech. Sci. Eng., 41(11), 495. https://doi.org/10.1007/s40430-019-1996-0
  50. Khalili, S. M. R., Malekzadeh, K. and Gorgabad, A. V. (2013), "Low velocity transverse impact response of functionally graded plates with temperature dependent properties", Compos. Struct., 96, 64-74. https://doi.org/10.1016/j.compstruct.2012.07.035
  51. Khan, M. A., Yasin, M. Y., Beg, M. S. and Khan, A. H. (2020), "Free and Forced Vibration Analysis of Functionally Graded Beams Using Finite Element Model Based on Refined Third-Order Theory", Emerging Trends in Mechanical Engineering, Springer, Singapore.
  52. Kiani, Y., Sadighi, M., Salami, S. J. and Eslami, M.R. (2013), "Low velocity impact response of thick FGM beams with general boundary conditions in thermal field", Compos. Struct., 104, 293-303. https://doi.org/10.1016/j.compstruct.2013.05.002.
  53. Lai, J., Yang, H., Wang, H., Zheng, X. and Wang, Q. (2019), "Penetration experiments and simulation of three-layer functionally graded cementitious composite subjected to multiple projectile impacts", Construct. Building Mater., 196, 499-511. https://doi.org/10.1016/j.conbuildmat.2018.11.154.
  54. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  55. Li, H. C., Ke, L. L., Yang, J., Kitipornchai, S. and Wang, Y. S. (2020), "Free vibration of variable thickness FGM beam submerged in fluid", Compos. Struct., 233, 111582. https://doi.org/10.1016/j.compstruct.2019.111582
  56. Moleiro, F., Carrera, E., Ferreira, A. J. M. and Reddy, J. N. (2020), "Hygro-thermo-mechanical modelling and analysis of multilayered plates with embedded functionally graded material layers", Compos. Struct., 233, 111442. https://doi.org/10.1016/j.compstruct.2019.111442
  57. Nguyen, T. K., Vo, T. P., Nguyen, B. D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074
  58. Sahla, M., Saidi, H., Draiche, K., Bousahla, A. A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663. https://doi.org/10.12989/scs.2019.33.5.663
  59. Sedighi, H. M., Shirazi, K. H. and Noghrehabadi, A. (2012), "Application of recent powerful analytical approaches on the non-linear vibration of cantilever beams", J. Nonlinear Sci. Numerical Simulation, 13(7-8), 487-494. https://doi.org/10.1515/ijnsns-2012-0030
  60. Sedighi, H. M., Shirazi, K. H. and Attarzadeh, M. A. (2013), "A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches", Acta Astronautica, 91, 245-250. https://doi.org/10.1016/j.actaastro.2013.06.018.
  61. Sedighi, H. M. and Daneshmand, F. (2014), "Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term", J. Appl. Comput. Mech., 1(1), 1-9. https://doi.org/10.22055/JACM.2014.10545.
  62. Sedighi, H. M. (2014), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. https://doi.org/10.1016/j.actaastro.2013.10.020.
  63. Sedighi, H. M., Koochi, A., Daneshmand, F. and Abadyan, M. (2015a), "Non-linear dynamic instability of a double-sided nano-bridge considering centrifugal force and rarefied gas flow", J. Non-Linear Mech., 77, 96-106. https://doi.org/10.1016/j.ijnonlinmec.2015.08.002.
  64. Sedighi, H. M., Daneshmand, F. and Abadyan, M. (2015b), "Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators", Compos. Struct., 124, 55-64. https://doi.org/10.1016/j.compstruct.2015.01.004.
  65. Sedighi, H. M., Daneshmand, F. and Abadyan, M. (2016), "Modeling the effects of material properties on the pull-in instability of nonlocal functionally graded nano-actuators", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 96(3), 385-400. https://doi.org/10.1002/zamm.201400160.
  66. Seguini, M. and Nedjar, D. (2017), "Nonlinear Analysis of Deep Beam Resting on Linear and Nonlinear Random Soil", Arabian J. Sci. Eng., 42(9), 3875-3893. https://doi.org/10.1007/s13369-017-2449-7
  67. Semmah, A., Heireche, H., Bousahla, A. A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89. https://doi.org/10.12989/anr.2019.7.2.089.
  68. She, G. L., Yan, K. M., Zhang, Y. L., Liu, H. B. and Ren, Y. R. (2018), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", European Phys. J. Plus, 133(9), 368. https://doi.org/10.1140/epjp/i2018-12196-5.
  69. She, G. L., Ren, Y. R. and Yan, K. M. (2019), "On snap-buckling of porous FG curved nanobeams", Acta Astronautica, 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010
  70. Simsek, M. and Al-Shujairi, M. (2017), "Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads", Compos. Part B Eng., 108, 18-34. https://doi.org/10.1016/j.compositesb.2016.09.098.
  71. Soliman, A. E., Eltaher, M. A., Attia, M. A. and Alshorbagy, A. E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., 66(1), 85-96. https://doi.org/10.12989/sem.2018.66.1.085
  72. Song, Z. G., He, X. and Liew, K. M. (2018), "Dynamic responses of aerothermoelastic functionally graded CNT reinforced composite panels in supersonic airflow subjected to low-velocity impact", Compos. Part B Eng., 149, 99-109. https://doi.org/10.1016/j.compositesb.2018.05.026
  73. Sucharda, O. and Konecny, P. (2018), Recommendation for the modelling of 3D non-linear analysis of RC beam tests", Comput. Concrete, 21(1), 11-20. https://doi.org/10.12989/cac.2018.21.1.011.
  74. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A. and Mahmoud, S. R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637
  75. Tounsi,A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A., (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524 https://doi.org/10.12989/scs.2020.34.4.511.
  76. Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023
  77. Yang, Y., Lam, C. C., Kou, K. P. and Iu, V. P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", Compos. Struct., 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016.
  78. Zarga, D., Tounsi, A., Bousahla, A. A., Bourada, F. and Mahmoud, S. R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389

Cited by

  1. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
  2. Finite element based stress and vibration analysis of axially functionally graded rotating beams vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.023
  3. An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2020, https://doi.org/10.12989/scs.2021.40.2.307
  4. Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.663