DOI QR코드

DOI QR Code

Service Mobility Support Scheme in SDN-based Fog Computing Environment

SDN 기반 Fog Computing 환경에서 서비스 이동성 제공 방안

  • Kyung, Yeun-Woong (Division of Computer Engineering, Hanshin University) ;
  • Kim, Tae-Kook (Dept. of Information, Communications & Software Engineering, Tongmyong University)
  • 경연웅 (한신대학교 컴퓨터공학부) ;
  • 김태국 (동명대학교 정보통신소프트웨어공학과)
  • Received : 2020.08.17
  • Accepted : 2020.09.18
  • Published : 2020.09.30

Abstract

In this paper, we propose a SDN-based fog computing service mobility support scheme. Fog computing architecture has been attracted because it enables task offloading services to IoT(Internet of Things) devices which has limited computing and power resources. However, since static as well as mobile IoT devices are candidate service targets for the fog computing service, the efficient task offloading scheme considering the mobility should be required. Especially for the IoT services which need low-latency response, the new connection and task offloading delay with the new fog computing node after handover can occur QoS(Quality of Service) degradation. Therefore, this paper proposes an efficient service mobility support scheme which considers both task migration and flow rule pre-installations. Task migration allows for the service connectivity when the fog computing node needs to be changed. In addition, the flow rule pre-installations into the forwarding nodes along the path after handover enables to reduce the connection delay and service interruption time.

본 논문은 SDN 기반 네트워크에서 fog computing 서비스의 이동성을 제안하고자 한다. Fog computing 아키텍처는 컴퓨팅 및 배터리 자원의 제약이 있는 IoT(Internet of Things) 기기들에게 테스크 오프로딩을 가능하게 함으로써 IoT의 저지연/고성능 서비스를 위한 방안으로 연구되고 있다. 하지만 fog computing 아키텍처에서는 고정된 IoT 기기 뿐만 아니라 이동하는 IoT 기기도 서비스 대상 단말로 고려되어야 하기 때문에 이러한 기기의 이동성을 고려한 오프로딩 방안이 필요하다. 특히 저지연 응답 시간을 요구하는 IoT 서비스의 경우, 오프로딩 이후 단말이 이동했을 때 새로운 fog computing 노드와의 새로운 통신 연결 및 테스크 오프로딩 과정을 다시 수행해야 하기 때문에 지연시간이 발생하여 사용자의 QoS(Quality of Service) 저하가 발생할 수 있다. 그러므로 본 연구에서는 단말의 이동성을 고려하여 테스크 또는 테스크의 결과를 이동 후의 fog computing 노드로 미리 migration 시키고 데이터 전송을 위한 rule 또한 미리 배치시킴으로써 통신 지연 및 서비스 복구 지연 시간을 줄일 수 있는 방안을 제시하고자 한다.

Keywords

References

  1. D.W.Lee, K.Cho and S.H.Lee, "Analysis on Smart Factory in IoT Environment," Journal of The Korea Internet of Things Society, Vol.5, No.2, pp.1-5, 2019. https://doi.org/10.1016/j.iot.2018.11.001
  2. K.B.Jang, "A Study on IoT Platform for Private Electrical Facilities Management," Journal of The Korea Internet of Things Society, Vol.5, No.2, pp.103-110, 2019. https://doi.org/10.20465/KIOTS.2019.5.2.103
  3. Y.W.Kyung and T.K.Kim, "Flow Handover Management Scheme based on QoS in SDN Considering IoT," Journal of The Korea Internet of Things Society, Vol.6, No.2, pp.45-50, 2020. https://doi.org/10.20465/KIOTS.2020.6.2.045
  4. P.Mach and Z.Becvar, "Mobile Edge Computing: A Survey on Architecture and Computation Offloading," IEEE Communications Surveys & Tutorials, Vol.19, No.3, pp.1628-1656, 2017. https://doi.org/10.1109/COMST.2017.2682318
  5. W.Bao, D.Yuan, Z.Yang, S.Wang, W.Li, B.B.Zhou and A.Y.Zomaya, "Follow Me Fog: Toward Seamess Handover Timing Schemes in a Fog Computing Environment," IEEE Communications Magazine, Vol.55, No.11, pp.72-78, 2017. https://doi.org/10.1109/MCOM.2017.1700363
  6. Y.Ma, W.Liang, J.Li, X.Jia and S.Guo, "Mobility-Aware and Delay-Sensitive Service Provisioning in Mobile Edge-Cloud Networks," IEEE Transactions on Mobile Computing, Early Access, 2020.
  7. Y.Kyung and T.Kim, "QoS-Aware Flexible Handover Management in Software-Defined Mobile Networks," MDPI Applied Sciences, Vol.10, No.12, 2020.
  8. 3GPP TS 36.300 v.15.8.0 Release 13, LTE.; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2. Available online: https://www.etsi.org/deliver/etsi_ts/136300_136399/136300/15.08.00_60/ts_136300v150800p.pdf
  9. T.Taleb and A.Ksentini, "Follow Me Cloud: Interworking Federated Clouds and Distributed Mobile Networks," IEEE Network, Vol.27, No.5, pp.12-19, 2013. https://doi.org/10.1109/MNET.2013.6616110
  10. Y.Bi, G.Han, C.Lin, Q.Deng, L.Guo and F.Li, "Mobility Support for Fog Computing: An SDN Approach," IEEE Communications Magazine, Vol.56, No.5, pp.53-59, 2018. https://doi.org/10.1109/MCOM.2018.1700908
  11. M.Liebsch and F.Z.Yousaf, "Runtime Relocation of CDN Serving Points-Enabler for Low Costs Mobile Content Delivery," in Proc. IEEE Wireless Communications and Networking Conference, 2013.
  12. M.Wichtlhuber, R.Reinecke and D.Hausheer, "An SDN-Based CDN/ISP Collaboration Architecture for Managing High-Volume Flows," IEEE Transactions on Network and Service Management, Vol.12, No.1, pp.48-60, 2015. https://doi.org/10.1109/TNSM.2015.2404792
  13. OpenFlow switch specification 1.5.1, [Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf, 2015.
  14. Y.W.Kyung and J.W.Park, "Prioritized Admission Control with Load Distribution over Multiple Controllers for Scalable SDN-based Mobile Networks," Springer Wireless Networks, Vol.25, pp.2963-2975, 2019. https://doi.org/10.1007/s11276-017-1615-x
  15. S.Bera, S.Misra and M.S.Obaidat, "Mobi-Flow: Mobility-Aware Adaptation Flow-Rule Placement in Software-Defined Access Network," IEEE Transactions on Mobilie Computing, Vol.18, No.8, pp.1831-1842, 2019. https://doi.org/10.1109/TMC.2018.2868932
  16. S.H.Rastegar, A.Abbasfar and V.S-Mansouri, "On Fair Rule Caching in Software Defined Radio Access Networks," IEEE Wireless Communications Letters, Vol.7, No.3, 2018.
  17. Q.Fan and N.Ansari, "Towards Workload Balancing in Fog Computing Empowered IoT," IEEE Transactions on Network Science and Engineering, Vol.7, No.1, 2020.
  18. H.Li, P.Li and S.Guo, "MoRule: Optimized Rule Placement for Mobile Users in SDN-enabled Access Networks," in Proc. IEEE Globecom, 2014.
  19. F.Y.Okay and S.Ozdemir, "Routing in Fog-Enabled IoT Platforms: A Survey and an SDN-based Solution," IEEE Internet of Things Journal, Vol.5, No.6, 2018.