DOI QR코드

DOI QR Code

Analytical Modelling and Heuristic Algorithm for Object Transfer Latency in the Internet of Things

사물인터넷에서 객체전송지연을 계산하기 위한 수리적 모델링 및 휴리스틱 알고리즘의 개발

  • Lee, Yong-Jin (Dept. of Technology Education, Korea National University of Education)
  • 이용진 (한국교원대학교 기술교육과)
  • Received : 2020.08.07
  • Accepted : 2020.09.04
  • Published : 2020.09.30

Abstract

This paper aims to integrate the previous models about mean object transfer latency in one framework and analyze the result through the computational experience. The analytical object transfer latency model assumes the multiple packet losses and the Internet of Things(IoT) environment including multi-hop wireless network, where fast re-transmission is not possible due to small window. The model also considers the initial congestion window size and the multiple packet loss in one congestion window. Performance evaluation shows that the lower and upper bounds of the mean object transfer latency are almost the same when both transfer object size and packet loss rate are small. However, as packet loss rate increases, the size of the initial congestion window and the round-trip time affect the upper and lower bounds of the mean object transfer latency.

본 논문은 평균 객체 전송 지연 시간에 대한 기존의 모델들을 하나의 프레임워크로 통합하고 실제 계산 경험을 통해 결과를 분석하는 것을 목표로 한다. 해석적 객체 전송 지연 시간 모델은 다중 패킷 손실과 작은 혼잡제어 윈도우로 인해 빠른 재전송이 불가능한 멀티홉 무선 네트워크를 위시한 사물 인터넷(IoT) 환경을 가정한다. 이 모델은 또한 초기 혼잡 윈도우 크기와 하나의 혼잡 윈도우에서의 다중 패킷 손실을 고려한다. 성능평가에 의하면, 전송 객체 크기와 패킷 손실률이 작은 경우 평균 객체 전송 지연의 하한값과 상한값은 거의 동일하다. 그러나 패킷 손실률이 커지면 초기 혼잡 윈도우의 크기와 왕복 시간이 평균 객체 전송 지연의 상·하한값에 영향을 미치는 것으로 나타났다.

Keywords

References

  1. M.Allman, V.Paxson and E.Blanton, TCP Congestion Control, RFC-2581, 2009.
  2. J.Padhye, V.Firoiu, D.Towsley and J.Kurose, "Modeling TCP Reno performance: A Simple Model and its Empirical Validation," ACM Transactions on Networking, Vol.8, pp.133-145, 2000. https://doi.org/10.1109/90.842137
  3. J.Jiong, Z.Shu-jing and Qi-gang, "An Adapted Full Model for TCP Latency," IEEE TENCON Conference, pp.801-804, 2002.
  4. R.Buyya and A.V.Dastjerdi, Internet of Things-Principles and Paradigms, Elsevier, 2016.
  5. D.Oliveria and R.Braun, "A Dynamic Adaptive Acknowledgement Strategy for TCP over Multi-hop Wireless Networks," IEEE INFOCOM Conference, pp.1863-1874, 2005.
  6. Y.Lee, "Analytical Model for Mean Web Object Transfer Latency Estimation in the Narrowband IoT Environment," Journal of The Korea Internet of Things Society, Vol.1, pp.1-4, 2015. https://doi.org/10.20465/KIOTS.2015.1.1.001
  7. Y.Lee, "Lower Bound for Mean Object Transfer Latency in the Narrowband IoT Environment," International Journal of Applied Engineering Research, Vol.12, pp.3365-3369, 2017.
  8. Y.Lee, "A Path Selection Model Considering Path Latency in the Communication Network with Geographically Correlated Failures," ICIC Express Letters, Vol.13, pp.789-796, 2019.
  9. M.Hachol-Balter, Performance Modeling and Design of Computer Systems, pp.352-355, Cambridge Press, 2013.
  10. A.Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering, pp.187-188, Pearson, 2009.
  11. S.Ross, Introduction to Probability and Statistics for Engineers and Scientists, pp.179-182, Hong-Reung, 2017.
  12. W.Stallings, High-speed Networks, pp.191-192, Prentice-Hall, 1998.
  13. J.Kurose and K.Ross, Computer Networking, pp.272-279, Prentice-Hall, 2003.
  14. B.A.Forouzan, Data Communications and Networking, 5th Edition, McGrawHill, pp.733-747, 2013.
  15. L.Zhao, C.Ladas and R.Edwards, "A Selective-ARQ Scheme for Improved TCP and UDP Performance over Wireless Networks," Proceedings of AIMEE, 2017.