DOI QR코드

DOI QR Code

Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition

  • Wang, Dandan (School of Resources and Environmental Engineering, Wuhan University of Technology) ;
  • Zhang, Guang (School of Resources and Environmental Engineering, Wuhan University of Technology) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Haeri, Hadi (State Key Laboratory for Deep GeoMechanics and Underground Engineering) ;
  • Naderi, A.A. (Department of Mining Engineering, Hamedan University of Technology)
  • Received : 2020.04.05
  • Accepted : 2020.08.21
  • Published : 2020.09.25

Abstract

Experimental and discrete element method were used to investigate the effects of joint number and its angularities on the shear behaviour of joint's bridge area. A new shear test condition was used to model the gypsum cracks under shear loading. Gypsum samples with dimension of 120 mm×100 mm×50 mm were prepared. the length of joints was 2cm. in experimental tests, the joint number is 1, 2 and 3 and its angularities change from 0° to 90° with increment of 45°. Assuming a plane strain condition, special rectangular models are prepared with dimension of 120 mm×100 mm. similar to joints configuration in experimental test, 9 models with different joint number and joint angularities were prepared. This testing show that the failure process is mostly governed by the joint number and joint angularities. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint number and joint angularities. Failure pattern and failure strength are similar in both of the experimental test and numerical simulation.

Keywords

References

  1. Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012.
  2. Bi, J., Zhou, X.P. and Qian, Q. (2016), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49(5), 1611-1627. https://doi.org/10.1007/s00603-015-0867-y.
  3. Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
  4. Boumaaza, M., Bezazi, A., Bouchelaghem, H., Benzennache, N., Amziane, S. and Scarpa, F. (2017), "Behavior of pre-cracked deep beams with composite materials repairs", Struct. Eng. Mech., 63(5), 575-583. http://dx.doi.org/10.12989/sem.2017.63.5.575.
  5. Cao, P., Liu, T.Y., Pu, C.Z. and Lin, H. (2015), "Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression", Eng. Geol., 187(17), 113-121. https://doi.org/10.1016/j.enggeo.2014.12.010.
  6. Cao, R.H., Cao, P., Fan, X., Xiong, X. and Lin, H. (2016), "An experimental and numerical study on mechanical behavior of ubiquitous-joint brittle rock-like specimens under uniaxial compression", Rock Mech. Rock Eng., 49(11), 4319-4338. https://doi.org/10.1007/s00603-016-1029-6.
  7. Chen, X., Liao, Z.H. and Li, D.J. (2011), "Experimental study of effects of joint inclination angle and connectivity rate on strength and deformation properties of rock masses under uniaxial compression", Chin. J. Rock Mech. Eng., 30(4), 781-789.
  8. Fan, X., Kulatilake, P.H.S.W. and Chen, X. (2015), "Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: a particle mechanics approach", Eng. Geol., 190, 17-32. https://doi.org/10.1016/j.enggeo.2015.02.008.
  9. Fan, X., Li, K., Lai, H., Xie, Y., Cao, R. and Zheng, J. (2018), "Internal stress distribution and cracking around flaws and openings of rock block under uniaxial compression: a particle mechanics approach", Comput. Geotech., 102(10), 28-38. https://doi.org/10.1016/j.compgeo.2018.06.002.
  10. Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2.
  11. Haeri, H. (2015), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16, 605-623. http://dx.doi.org/10.12989/cac.2015.16.4.605.
  12. Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-12. http://dx.doi.org/10.12989/cac.2016.17.1.107.
  13. Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. http://dx.doi.org/10.12989/cac.2016.17.6.723.
  14. Haeri, H. and Sarfarazi, V. (2016c), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, 18, 201-214. https://doi.org/10.12989/cac.2016.18.2.201.
  15. Haeri, H., Khaloo, A. and Fatehi Marji, M. (2015), "Fracture analyses of different preholed concrete specimens under compression", Acta Mechanica Sinica, 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3.
  16. Haeri, H., Khaloo, A. and Marji, M.F. (2015), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6.
  17. Haeri, H., Khaloo, A. and Marji, M.F. (2015), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mechanica Sinica, 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3.
  18. Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016d), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. http://dx.doi.org/10.12989/cac.2016.17.5.649.
  19. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013), "Modeling the propagation mechanism of two random micro cracks in rock Samples under uniform tensile loading", 13th International Conference on Fracture, Beijing, China.
  20. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Lat. Am. J. Solid. Struct., 11(8), 1400-1416. https://doi.org/10.1590/S1679-78252014000800007.
  21. Hosseini Nasab, H. and Marji, M.F. (2007), "A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting", J. Mech. Mater. Struct., 2(3), 439-458. https://doi.org/10.2140/jomms.2007.2.439.
  22. Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete", Comput. Concrete, 15(2), 102-111. https://doi.org/10.12989/cac.2015.15.2.199.
  23. Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solid. Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
  24. Lee, J.W. and Lee, J.Y. (2018), "A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks", Struct. Eng. Mech., 66(1), 125-138. https://doi.org/10.12989/sem.2018.66.1.125.
  25. Marji, M.F. (1997), "Modelling of cracks in rock fragmentation with a higher order displacement discontinuity method", PhD Thesis, Mining Engineering (Rock Mechanics), 1(1), 167,
  26. Marji, M.F. (2013), "On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method", Eng. Fract. Mech., 98, 365-382. https://doi.org/10.1016/j.engfracmech.2012.11.015.
  27. Monfared, M.M. (2017), "Mode III SIFs for interface cracks in an FGM coating-substrate system", Struct. Eng. Mech., 64(1), 71-79. https://doi.org/10.12989/sem.2017.64.1.071.
  28. Nabil, B., Abdelkader, B., Miloud, A. and Noureddine, B. (2012), "On the mixed-mode crack propagation in FGMs plates: comparison of different criteria", Struct. Eng. Mech., 61(3), 201-213. https://doi.org/10.12989/sem.2017.61.3.371.
  29. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech., 52(4) 167-181. http://dx.doi.org/10.12989/sem.2014.52.4.829.
  30. Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027.
  31. Potyondy, D. and Cundall, P. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  32. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression", Comput. Concrete, 11(2), 55-65. https://doi.org/10.12989/cac.2013.11.2.149.
  33. Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. (2018), "Two new triangular finite elements containing stable open cracks", Struct. Eng. Mech., 65(1), 99-110. https://doi.org/10.12989/sem.2018.65.1.099.
  34. Sarfarazi, V. and Haeri, H. (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.12989/cac.2013.11.2.149.
  35. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. http://dx.doi.org/10.12989/acc.2015.3.4.269.
  36. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3.
  37. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016c), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.1007/s00603-013-0450-3.
  38. Tang, C.A., Lin, P., Wong, R.H.C. and Chau, K.T. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-part II: numerical approach", Int. J. Rock Mech. Min. Sci., 38(7), 925-939. https://doi.org/10.1016/S1365-1609(01)00065-X.
  39. Wang, M., Cao, P., Wan, W., Zhao, Y.L., Liu, J. and Liu, J.S. (2017), "Crack growth analysis for rock-like materials with ordered multiple pre-cracks under biaxial compression", J. Central South Univ., 24(4), 866-874. https://doi.org/10.1007/s11771-017-3489-6.
  40. Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1007/s11771-017-3489-6.
  41. Yang, S.Q., Liu, X.R. and Jing, H.W. (2013), "Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression", Int. J. Rock Mech. Min. Sci., 63(5), 82-92. https://doi.org/10.1007/s11771-017-3489-6.
  42. Yang, S.Q., Tian, W.L., Huang, Y.H., Ranjith, P.G. and Ju, Y. (2016), "An experimental and numerical study on cracking behavior of brittle sandstone containing two non-coplanar fissures under uniaxial compression", Rock Mech. Rock Eng., 49(4), 1497-1515. https://doi.org/10.1007/s11771-017-3489-6.
  43. Yang, X.X., Jing, H.W., Tang, C.A. and Yang, S.Q. (2017), "Effect of parallel joint interaction on mechanical behavior of jointed rock mass models", Int. J. Rock Mech. Min. Sci., 92, 40-53. https://doi.org/10.1016/j.ijrmms.2016.12.010.
  44. Yang, X.X., Kulatilake, P.H.S.W., Jing, H.W. and Yang, S. (2015), "Numerical simulation of a jointed rock block mechanical behavior adjacent to an underground excavation and comparison with physical model test results", Tunnel. Underg. Space Technol., 50, 129-142. https://doi.org/10.1016/j.tust.2015.07.006
  45. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  46. Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1.
  47. Zhang, X.P., Liu, Q.S., Wu, S.C. and Tang, X.H. (2015), "Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression", Eng. Geol., 199, 74-90. https://doi.org/10.1016/j.enggeo.2015.10.007.
  48. Zhou, X.P. and Wang, Y. (2016) Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010
  49. Zhou, X.P. and Yang, H.Q. (2012), "Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses", Int. J. Rock Mech. Min. Sci., 55, 15-27. https://doi.org/10.1016/j.ijrmms.2012.06.001
  50. Zhou, X.P., Bi, J. and Qian, Q. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng., 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4