• Title/Summary/Keyword: new shear test condition

Search Result 45, Processing Time 0.033 seconds

Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition

  • Wang, Dandan;Zhang, Guang;Sarfarazi, Vahab;Haeri, Hadi;Naderi, A.A.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.239-255
    • /
    • 2020
  • Experimental and discrete element method were used to investigate the effects of joint number and its angularities on the shear behaviour of joint's bridge area. A new shear test condition was used to model the gypsum cracks under shear loading. Gypsum samples with dimension of 120 mm×100 mm×50 mm were prepared. the length of joints was 2cm. in experimental tests, the joint number is 1, 2 and 3 and its angularities change from 0° to 90° with increment of 45°. Assuming a plane strain condition, special rectangular models are prepared with dimension of 120 mm×100 mm. similar to joints configuration in experimental test, 9 models with different joint number and joint angularities were prepared. This testing show that the failure process is mostly governed by the joint number and joint angularities. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint number and joint angularities. Failure pattern and failure strength are similar in both of the experimental test and numerical simulation.

Evaluation of horizontal shear strength of the shear connectors between precast decks and PSC girders (프리캐스트 바닥판과 PSC 거더 전단연결재의 수평전단강도 평가)

  • Hyun, Byung-Hak;Chung, Chul-Hun;Shim, Chang-Su;Kim, Yung-Jin;Lee, Han-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.240-243
    • /
    • 2004
  • A new shear connection for the application of precast decks to PSC girders was proposed and push-off tests were conducted to evaluate the horizontal shear strength of the shear connection. Major parameters of the tests were connector type, shank area, vertical load, surface condition and bedding height. Judging from the test results, shear strength of the suggested shear connection was proportional to the shank area and yield strength of the connectors and was in inverse proportion to the bedding height. Shear connection with shear key at the surface showed better performance. An empirical equation for the evaluation of the shear strength of the shear connection without considering bond strength was proposed and it showed good correlation with the test results.

  • PDF

Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test (직접전단실험시 전단상자의 종류에 따른 모래시료의 전단거동)

  • Hong, Young-Ho;Byun, Yong-Hoon;Chae, Jong-Gil;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.51-62
    • /
    • 2015
  • Shear behavior obtained by direct shear tests is dependent on shear box and boundary condition. The objective of this study is to analyze problems of conventional direct shear test (type-A) and provide the reliable results by developing type-C direct shear apparatus. Experimental tests are carried out for Ulleung sand by using type-A and -C direct shear devices. The soil specimens, which are prepared at the relative density of 60%, and are applied to vertical confining stresses of 50, 100, 200, 300, and 400 kPa, are sheared at a constant shear strain rate of 0.5 mm/min. By comparing the results obtained by type-A and -C direct shear apparatus under constant normal load (CNL) condition, the performance of new one is verified. In addition, two constrained conditions including constant normal load (CNL) and constant pressure (CP) are applied to type-C one. Experimental results show that type-A direct shear apparatus has some problems such as rotating of loading plate and upper shear box, and the frictional forces between soil and inner wall of upper shear box. Thus, the shear strengths obtained by type-A device are overestimated or underestimated depending on shear box and boundary condition. On the other hand, type-C device produces clear and consistent test results regardless of constrained conditions. This study represents that type-C direct shear apparatus not only can solve the problems of type-A direct shear apparatus but provide the reliable results.

Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands

  • Lee, Sojeong;Im, Jooyoung;Cho, Gye-Chun;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.445-452
    • /
    • 2019
  • Gel-type biopolymers have recently been introduced as environmentally friendly soil binders and have shown substantial strengthening effects in laboratory experimental programs. Although the strengthening effects of biopolymer-treated sands have been verified in previous direct shear tests and uniaxial compression tests, there has been no attempt to examine shear behavior under different confining stress conditions. This study therefore aimed to investigate the strengthening effects of biopolymer-treated sand using laboratory triaxial testing with a focus on confining pressures. Three representative confining pressure conditions (${\sigma}_3=50kPa$, 100 kPa, and 200 kPa) were tested with varying biopolymer contents ($m_{bp}/m_s$) of 0.5%, 1.0%, and 2.0%, respectively. Based on previous studies, it was assumed that biopolymer-treated sand is susceptible to hydraulic conditions, and therefore, the experiments were conducted in both a hydrated xanthan gum condition and a dehydrated xanthan gum condition. The results indicated that the shear resistance was substantially enhanced and there was a demonstrable increase in cohesion as well as the friction angle when the biopolymer film matrix was comprehensively developed. Accordingly, it can be concluded that the feasibility of the biopolymer treatment will remain valid under the confining pressure conditions used in this study because the resisting force of the biopolymer-treated soil was higher than that in the untreated condition, regardless of the confining pressure.

Predictoin of Longitudinal Steel Tension for Shear-Critical Reinforced Concrete Beams with Stirrups (전단이 지배하는 철근콘크리트 보의 주철근 인장력 산정)

  • Rhee, Chang-Shin;Byun, Su-Min;Shin, Geun-Ok;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.374-377
    • /
    • 2006
  • The measured longitudinal reinforcement tensions in the shear-critical RC beams were significantly higher than the calculated values by the beam theory. This may be attributed to the reduction of the internal-moment arm length by the development of the arch action. In this paper, the measured longitudinal reinforcement tensions in the test performed by Kim were compared with those predicted by the new truss model on the basis of the compatibility condition of the shear deformation.

  • PDF

Evaluation of Undrained Shear Strength of Busan New-port Clay by DMT (DMT를 이용한 부산신항 점토의 비배수 전단강도 추정)

  • Hong, Sung-Jin;Shin, Dong-Hyun;Kim, Dong-Hee;Jung, Sang-Jin;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.87-98
    • /
    • 2007
  • A series of dilatometer test, field vane test, and $CK_0U$ triaxial test were performed for clayey soils of Busan new port site to develop the relationships between undrained shear strength and the DMT results. Normalized undrained shear strength is turned out to be $S_{u(CKU)}/{\sigma}'_v=0.30{\sim}0.35\;for\;CK_0U$ triaxial test and ${\mu}S_{u(VST)}/{\sigma}'_v=0.20{\sim}0.22$ for vane shear test. By comparing the undrained shear strength estimated from DMT indices with the results measured by in-situ vane test or $CK_0U$ triaxial test, two methods to predict the undrained shear strength from DMT results are suggested. One is based on the relationship between $S_u/{\sigma}'_v$ and horizontal stress index (KD) while another method comes from $N_c-I_D$ and $N_c-E_D$ correlation. It was observed that the method based on $N_c-I_D\;or\;N_c-E_D$ relation shows slightly better accuracy than the one based on $K_D$ although all of the methods suggested in this study provided comparable values of predicted undrained shear strength. Since the definitions of $I_D\;and\;E_D$ contain $p_1-p_0$, in which soil condition is reflected, it is believed that the prediction method using $N_c$ is capable of taking a material type into consideration.

Adhesion Characteristics and Anatomic Scanning of Plywood Bonded by High Density Polyethylene (고밀도 폴리에틸렌으로 접착한 합판의 접착성질과 해부학적 관찰)

  • Han, Kie-Sun;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.16-23
    • /
    • 1997
  • This study was carried out to discuss feasibility of high density polyethylene(HDPE) as a new substitute for the conventional adhesives in plywood manufacture. Plywood was composed of radiata pine(Pinus radiata) and Malas(Homallium feotidium) veneers and bonded by HDPE. Adhesion characteristics and anatomical scanning has been examined through tensile-shear strength test and scanning electron microscopy(SEM). The results are as follows; 1. Optimum loading quantity was 15g/$(30.3{\times}30.3)cm^2$, and tensile-shear strength increased with the increase of loading quantity. 2. Even at the hot pressing time of 1 minute, tensile-shear strength met the value of KS(over the 7.5kgf/$cm^2$), and tensile-shear strength increased with the increase of hot pressing time. 3. Plywood composed of veneer at moisture content of 19.6% showed similar tensile-shear strength to that at air conditioned moisture content of 11.4%. 4. Under the same condition of hot pressing time, tensile-shear strength of plywood bonded by HDPE met the KS value of boil and wet test and proved the same group as phenol formaldehyde adhesive. 5. HDPE films showed mechanical adhesion through penetration into the lathe check and ray of veneer.

  • PDF

A study on the optimum condition of FRP coarse-sand coating by using a new testing method for shear bearing capacity of FRP-concrete interface (새로운 FRP-콘크리트 전단부착성능 평가법을 활용한 최적 FRP 규사코팅 조건에 관한 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Kim, Seung-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.277-289
    • /
    • 2011
  • This study proposes a new testing method for shear bearing capacity of FRP-concrete interface, which could well consider a loading condition corresponding to a tunnel lining undergoing axial compression and could be easily carried out with a simply specified specimen. A parametric study is carried out for capturing an optimized condition of coarse-sand coating of FRP, which governs shear bearing capacity of FRP-concrete interface, by using the proposed testing manner in this study. From the parametric study, it is shown that the proposed testing method is reasonably feasible in comparison with the existing testing methods. An optimum condition of coated sand size and sand density is given for the shearing capacity of FRP-concrete interface.

Calculation Method for Nominal Area of Rock Core Specimen During Direct Shear Test (암석코어시편의 절리면 직접전단시험을 위한 겉보기 면적 계산방법)

  • Kang, Hoon;Park, Jung-Wook;Park, Chan;Oh, Tae-Min;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.551-558
    • /
    • 2020
  • This note presents the calculation of nominal area for rock core specimen under direct shear testing condition. The initial nominal area was assumed as ellipsoid, and the equations for calculating the nominal area are derived. The normalized shear displacement and normalized nominal area have an identical relationship regardless of the ellipsoid shape. New testing constants and the generalized method were suggested to calculate the decrease of the nominal area. The method was applied to calculate the direct shear testing data and the changes of result were discussed.

Analysis of Shear and Friction chacteristics in End milling with variable cutting condition (Part 1 Up-end milling) (절삭조건에 따른 엔드밀링 가공시 전단 및 마찰 특성 분석(1. 상향 엔드밀링))

  • Lee, Young-Moon;Yang, Seung-Han;Ming Chen;Jang, Seung-Il
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.223-228
    • /
    • 2003
  • In end milling processes, characterized by use of rotating tools, the underformed chip thickness varies periodically with the phase change of tool. In current study, as a new approach to analyse shear behaviors In the shear plane and chip-tool friction behavior chip-tool contact region during an end milling process. In this approach, an up-end milling process is transformed into an equivalent oblique cutting process. Experimental investigations for two sets of cutting tests i.e.. up-end milling and the equivalent oblique cutting test were performed to verify the presented model.

  • PDF