Research Trend in Solid Lubricant Layered Materials for the High Performance Li-ion Batteries

층상구조 재료의 고체윤활작용을 이용한 고성능 리튬이온 전지 응용 연구동향

  • Hur, Jaehyun (Department of Chemical and Biological Engineering, Gachon University)
  • 허재현 (가천대학교 화공생명공학과)
  • Published : 2020.10.31

Abstract

최근 층상구조를 가진 전이금속 칼코겐 화합물이 새로운 고성능 리튬이온전지 음극소재로서 주목받고 있다. 층상구조 물질들의 고성능 전극 소재 활용에 있어 박리를 이용한 정확한 층의 개수 조절은 전기화학 반응성을 증가시키고, 전극 필름 내에서의 균일한 거동을 위해서 매우 중요하다. 볼 밀링 공정은 이차전지 전극 소재 제조에 있어서 주로 물질의 분쇄나 고상 화학반응을 유도하여 합금 형태의 전극 소재 개발에 보편적으로 사용되는 공정이나, 층상구조를 가진 전이금속 칼코겐 화합물에 적용하면 층상구조 물질에 고체윤활작용을 일으켜 박리가 촉진된다. 이러한 성질을 이용하여 다양한 종류의 전이금속 칼코겐 화합물(예: MoS2, MoSe2, NbSe2)에 적절한 카본 매트릭스 물질과 복합화를 통해 새로운 전극 소재를 합성하고, 이를 통해 고성능 리튬이온전지 음극 소재를 제조하는 연구 동향에 대해 보고하고자 한다.

Keywords

References

  1. M. Armand and J. M. Tarascon, Building better batteries, Nature, 451, 652-657 (2008). https://doi.org/10.1038/451652a
  2. J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359-367 (2001). https://doi.org/10.1038/35104644
  3. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources, 257, 421-443 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.103
  4. N. T. Hung, J. Bae, J. H. Kim, H. B. Son, I. T. Kim, and J. Hur, Facile preparation of a zinc-based alloy composite as a novel anode material for rechargeable lithium-ion batteries, Appl. Surf. Sci., 429, 210-217 (2018). https://doi.org/10.1016/j.apsusc.2017.06.095
  5. N. Q. Hai, S. H. Kwon, H. Kim, I. T. Kim, S. G. Lee, and J. Hur, High-performance MoS2-based nanocomposite anode prepared by high-energy mechanical milling: The effect of carbonaceous matrix on MoS2, Electrochim. Acta, 260, 129-138 (2018). https://doi.org/10.1016/j.electacta.2017.11.068
  6. Q. H. Nguyen, N. T. Hung, S. J. Park, I. T. Kim, and J. Hur, Enhanced performance of carbon-free intermetallic zinc titanium alloy (Zn-ZnxTiy) anode for lithium-ion batteries, Electrochem. Acta, 301, 229-239 (2019). https://doi.org/10.1016/j.electacta.2019.01.182
  7. R. R. Chianelli, G. Berhault, and B. Torres, Unsupported transition metal sulfide catalysts: 100 years of science and application, Catal. Today, 147, 275-286 (2009). https://doi.org/10.1016/j.cattod.2008.09.041
  8. Q. H. Nguyen, J. S. Choi, Y.-C. Lee, I. T. Kim, and J. Hur, 3D hierarchical structure of MoS2@G-CNT combined with post-film annealing for enhanced lithium-ion storage, J. Ind. Eng. Chem., 69, 116-126 (2019). https://doi.org/10.1016/j.jiec.2018.09.015
  9. H. Liu, Z. Huang, G. Wu, Y. Wu, G. Yuan, C. He, X. Qi, and J. Zhong, A novel WS2/NbSe2 vdW heterostructure as an ultrafast charging and discharging anode material for lithium-ion batteries, J. Mater. Chem. A, 6, 17040-17048 (2018). https://doi.org/10.1039/C8TA05531A
  10. Y. Jung, E. Ji, A. Capasso, and G.-H. Lee, Recent progresses in the growth of two-dimensional transition metal dichalcogenides, J. Korean Ceram. Soc., 56, 24-36 (2019). https://doi.org/10.4191/kcers.2019.56.1.12
  11. Y. Zhang, Y. Yao, M. G. Sendeku, L. Yin, X. Zhan, F. Wang, Z. Wang, and J. He, Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures, Adv. Mater., 31, 1901694 (2019). https://doi.org/10.1002/adma.201901694
  12. S. Zhu, L. Gong, J. Xie, Z. Gu, and Y. Zhao, Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications, Small Methods, 1, 1700220 (2017). https://doi.org/10.1002/smtd.201700220
  13. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional atomic crystals, PNAS, 102, 10451-10453 (2005). https://doi.org/10.1073/pnas.0502848102
  14. X. Liu, H. Chen, J. Lin, Y. Li, and L. Guo, Exfoliation of transition-metal dichalcogenides using ATP in aqueous solution, Chem. Comm., 55, 2972-2975 (2019). https://doi.org/10.1039/c8cc10259g
  15. J. Peng, J. Wu, X. Li, Y. Zhou, Z. Yu, Y. Guo, J. Wu, Y. Lin, Z. Li, X. Wu, C. Wu, and Y. Xie, Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking, J. Am. Chem. Soc., 139, 9019-9025 (2017). https://doi.org/10.1021/jacs.7b04332
  16. M. Debata, T. S. Acharya, P. Sengupta, P. P. Acharya, S. Bajpai, and K. Jayasankar, Effect of high energy ball milling on structure and properties of 95W-3.5Ni-1.5Fe heavy alloys, Int. J. Refract. Hard Mater., 69, 170-179 (2017). https://doi.org/10.1016/j.ijrmhm.2017.08.007
  17. H. Zhao, H. Zeng, Y. Wu, S. Zhang, B. Li, and Y. Huang, Facile scalable synthesis and superior lithium storage performance of ball-milled MoS2-graphite nanocomposites, J. Mater. Chem. A, 3, 10466-10470 (2015). https://doi.org/10.1039/C5TA00472A
  18. Y. Liu, M. Zhu, and D. Chen, Sheet-like MoSe2/C composites with enhanced Li-ion storage properties, J. Mater. Chem. A, 3, 11857-11862 (2015). https://doi.org/10.1039/C5TA02100F
  19. Z. Zhang, Y. Fu, X. Yang, Y. Qu, and Z. Zhang, Hierarchical MoSe2 nanosheets/reduced graphene oxide composites as anodes for lithium-ion and sodium-ion batteries with enhanced electrochemical performance, Chem. Nano Mat., 1, 409-414 (2015).
  20. Y. Shi, C. Hua, B. Li, X. Fang, C. Yao, Y. Zhang, Y.-S. Hu, Z. Wang, L. Chen, D. Zhao, and G. D. Stucky, Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance, Adv. Funct. Mater., 23, 1832-1838 (2013). https://doi.org/10.1002/adfm.201202144
  21. H. Kim, Q. H. Nguyen, I. T. Kim, and J. Hur, Scalable synthesis of high-performance molybdenum diselenide-graphite nanocomposite anodes for lithium-ion batteries, Appl. Surf. Sci., 481, 1196-1205 (2019). https://doi.org/10.1016/j.apsusc.2019.03.165
  22. E. Hitz, J. Wan, A. Patel, Y. Xu, L. Meshi, J. Dai, Y. Chen, A. Lu, A. V. Davydov, and L. Hu, Electrochemical intercalation of lithium ions into NbSe2 nanosheets, ACS Appl. Mater. Interfaces, 8, 11390-11395 (2016). https://doi.org/10.1021/acsami.5b11583
  23. C. Peng, H. Lyu, L. Wu, T. Xiong, F. Xiong, Z. Liu, Q. An, and L. Mai, Lithium- and magnesium-storage mechanisms of novel hexagonal NbSe2, ACS Appl. Mater. Interfaces, 10, 36988-36995 (2018). https://doi.org/10.1021/acsami.8b12662
  24. F. J. Sonia, M. K. Jangid, B. Ananthoju, M. Aslam, P. Johari, and A. Mukhopadhyay, Understanding the Li-storage in few layers graphene with respect to bulk graphite: Experimental, analytical and computational study, J. Mater. Chem. A, 5, 8662-8679 (2017). https://doi.org/10.1039/C7TA01978E
  25. Q. H. Nguyen, H. Kim, I. T. Kim, W. Choi, and J. Hur, Few-layer NbSe2@graphene heterostructures as anodes in lithium-ion half- and full-cell batteries, Chem. Eng. J., 382, 122981 (2020). https://doi.org/10.1016/j.cej.2019.122981