전용액공정 전자소자 제작용 3D 가교제에 관한 연구

Three-dimensional Gelator for All Solution-processed and Photopatterned Electronic Devices

  • 김민제 (연세대학교 화공생명공학과) ;
  • 조정호 (연세대학교 화공생명공학과)
  • Kim, Min Je (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Cho, Jeong Ho (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 발행 : 2020.12.31

초록

용액공정을 통해 유기 전자소자를 대면적으로 제조하는 것은 다양한 장치 구성 요소(반도체, 절연체, 도체)의 패터닝 및 적층이 필요하기 때문에 매우 어려운 과제이다. 본 연구에서는 4개의 광 가교 기능기를 가지는 3차원 사면체 가교제인 (2,2-bis(((4-azido-2,3,5,6-tetrafluorobenzoyl)oxy)methyl)propane-1,3-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate) (4Bx)를 활용하여 용액공정을 기반으로 형성된 전자재료 박막을 고해상도로 패터닝 및 적층하는 기술을 개발하고, 이를 사용하여 고분자 박막 트랜지스터(PTFTs) 및 논리회로 어레이 제작을 진행하였다. 4Bx는 다양한 용액공정이 가능한 전자재료와 용매에 쉽게 혼합될 수 있으며, 자외선(UV)에 의해 가교제가 광 활성화되어 전자재료와 가교 결합을 형성할 수 있다. 4Bx는 기존의 2개의 광 가교 기능기를 갖는 가교제에 비해 높은 가교 효율로 인해 적은 양을 첨가하여도 완전하게 가교된 전자재료 박막을 형성할 수 있어 전자재료의 고유한 특성을 보존할 수 있다. 더욱이, 가교된 전자재료 박막은 화학적 내구성이 향상되어 고해상도 미세 패터닝을 할 수 있을 뿐만 아니라 용액공정을 통해 전자소자를 구성하는 전자재료의 적층이 가능하다. 4Bx의 광 가교 방법은 전용액공정을 통한 전자소자의 제작에 대한 혁신적인 방안을 제시한다.

키워드

참고문헌

  1. G. H. Gelinck et al., Flexible active-matrix displays and shift registers based on solution-processed organic transistors, Nat. Mater., 3, 106-110 (2004). https://doi.org/10.1038/nmat1061
  2. J. Y. Oh et al., Intrinsically stretchable and healable semiconducting polymer for organic transistors, Nature, 539, 411-415 (2016). https://doi.org/10.1038/nature20102
  3. H. Yan et al., A high-mobility electron-transporting polymer for printed transistors, Nature, 457, 679-686 (2009). https://doi.org/10.1038/nature07727
  4. H. Sirringhaus, 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon, Adv. Mater., 26, 1319-1335 (2014). https://doi.org/10.1002/adma.201304346
  5. M. Kettner et al., Solution-processed organic transistors with excellent electrical stability under ambient conditions, Adv. Electron. Mater., 1900295 (2019).
  6. S. Wang et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature, 555, 83-88 (2018). https://doi.org/10.1038/nature25494
  7. Y. Yao, L. Zhang, T. Leydecker, and P. Samori, Direct photolithography on molecular crystals for high performance organic optoelectronic devices, J. Am. Chem. Soc., 140, 6984-6990 (2018). https://doi.org/10.1021/jacs.8b03526
  8. J. A. Rogers, T. Someya, and Y. Huang, Materials and mechanics for stretchable electronics, Science, 327, 1603-1607 (2010). https://doi.org/10.1126/science.1182383
  9. E. K. Lee et al., Chemically robust ambipolar organic transistor array directly patterned by photolithography, Adv. Mater., 29, 1605282 (2017). https://doi.org/10.1002/adma.201605282
  10. X. Hu et al., Directly photopatternable polythiophene as dual-tone photoresist, Macromolecules, 50, 7258-7267 (2017). https://doi.org/10.1021/acs.macromol.7b01208
  11. I. E. Jacobs et al., Direct-write optical patterning of P3HT films beyond the diffraction limit, Adv. Mater., 29, 1603221 (2017). https://doi.org/10.1002/adma.201603221
  12. J. A. DeFranco, B. S. Schmidt, M. Lipson, and G. G. Malliaras, Photolithographic patterning of organic electronic materials, Org. Electron., 7, 22-28 (2006). https://doi.org/10.1016/j.orgel.2005.10.002
  13. H. Minemawari et al., Inkjet printing of single-crystal films, Nature, 475, 364-367 (2011). https://doi.org/10.1038/nature10313
  14. M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Inkjet printing-process and its applications, Adv. Mater., 22, 673-685 (2010). https://doi.org/10.1002/adma.200901141
  15. L. J. Guo, Nanoimprint lithography: Methods and material requirements, Adv. Mater., 19, 495-513 (2007). https://doi.org/10.1002/adma.200600882
  16. G. Tsiminis et al., Nanoimprinted organic semiconductor laser pumped by a light-emitting diode, Adv. Mater., 25, 2826-2830 (2013). https://doi.org/10.1002/adma.201205096
  17. F. Hermerschmidt, S. A. Choulis, and E. J. W. List-Kratochvil, Implementing inkjet-printed transparent conductive electrodes in solution-processed organic electronics, Adv. Mater. Technol., 4, 1800474 (2019). https://doi.org/10.1002/admt.201800474
  18. H. Sirringhaus et al., High-resolution inkjet printing of all-polymer transistor circuits, Science, 290, 2123-2126 (2000). https://doi.org/10.1126/science.290.5499.2123
  19. F. J. Kahle, C. Saller, A. Kohler, and P. Strohriegl, Crosslinked semiconductor polymers for photovoltaic applications, Adv. Energy Mater., 7, 1700306 (2017). https://doi.org/10.1002/aenm.201700306
  20. J. W. Rumer and I. McCulloch, Organic photovoltaics: Crosslinking for optimal morphology and stability, Mater. Today, 18, 425-435 (2015). https://doi.org/10.1016/j.mattod.2015.04.001
  21. E. Reichmanis and L. F. Thompson, Polymer materials for microlithography, Chem. Rev., 89, 1273-1289 (1989). https://doi.org/10.1021/cr00096a001
  22. P. E. Keivanidis, S.-H. Khong, P. K. H. Ho, N. C. Greenham, and R. H. Friend, All-solution based device engineering of multilayer polymeric photodiodes: Minimizing dark current, Appl. Phys. Lett., 94, 173303 (2009). https://doi.org/10.1063/1.3120547
  23. C. Tao et al., Controlling hierarchy in solution-processed polymer solar cells based on crosslinked P3HT, Adv. Energy Mater., 3, 105-112 (2013). https://doi.org/10.1002/aenm.201200394
  24. J. W. Rumer et al., Dual function additives: A small molecule crosslinker for enhanced efficiency and stability in organic solar cells, Adv. Energy Mater., 5, 1401426 (2015). https://doi.org/10.1002/aenm.201401426
  25. S.-H. Khong et al., General photo-patterning of polyelectrolyte thin films via efficient ionic bis (fluorinated phenyl azide) photo-cross-linkers and their post-deposition modification, Adv. Funct. Mater., 17, 2490-2499 (2007). https://doi.org/10.1002/adfm.200600506
  26. B. Liu et al., High internal quantum efficiency in fullerene solar cells based on crosslinked polymer donor networks, Nat. Commun., 3, 1321 (2012). https://doi.org/10.1038/ncomms2211
  27. R.-Q. Png et al., High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains, Nat. Mater., 9, 152 (2010). https://doi.org/10.1038/nmat2594
  28. N. Cho et al., In-situ crosslinking and n-doping of semiconducting polymers and their application as efficient electron-transporting materials in inverted polymer solar cells, Adv. Energy Mater., 1, 1148-1153 (2011). https://doi.org/10.1002/aenm.201100429
  29. B. J. Kim, Y. Miyamoto, B. Ma, and J. M. J. Frechet, Photocrosslinkable polythiophenes for efficient, thermally stable, organic photovoltaics, Adv. Funct. Mater., 19, 2273-2281 (2009). https://doi.org/10.1002/adfm.200900043
  30. S. X. Cai, D. J. Glenn, M. Kanskar, M. N. Wybourne, and J. F. W. Keana, Development of highly efficient deep-UV and electron beam mediated cross-linkers: Synthesis and photolysis of bis (perfluorophenyl) azides, Chem. Mater., 6, 1822-1829 (1994). https://doi.org/10.1021/cm00046a041
  31. S. Brase, C. Gil, K. Knepper, and V. Zimmermann, Organic azides: An exploding diversity of a unique class of compounds, Angew. Chem. Int. Ed., 44, 5188-5240 (2005). https://doi.org/10.1002/anie.200400657
  32. D. Rodriquez et al., Comparison of methods for determining the mechanical properties of semiconducting polymer films for stretchable electronics, ACS Appl. Mater. Interfaces, 9, 8855-8862 (2017). https://doi.org/10.1021/acsami.6b16115
  33. J.-H. Kim et al., Tensile testing of ultra-thin films on water surface, Nat. Commun., 4, 2520 (2013). https://doi.org/10.1038/ncomms3520
  34. R. Noriega et al., A general relationship between disorder, aggregation and charge transport in conjugated polymers, Nat. Mater., 12, 1038 (2013). https://doi.org/10.1038/nmat3722