DOI QR코드

DOI QR Code

Effect of Carbon Nanotube/Copper Composite on Efficiency of Electromagnetic Interference Shielding

전기도금법으로 제조된 탄소나노튜브/구리 복합체의 전자기파 차폐 연구

  • Lee, Seunghyuk (Department of Information Communication, Materials and Chemistry Convergence Technology, Soongsil University) ;
  • Shin, Myunggyu (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Song, Hyeonjun (Department of Information Communication, Materials and Chemistry Convergence Technology, Soongsil University) ;
  • Jeong, Youngjin (Department of Information Communication, Materials and Chemistry Convergence Technology, Soongsil University)
  • 이승혁 (숭실대학교 정보통신소재융합학과) ;
  • 신명규 (숭실대학교 유기신소재파이버공학과) ;
  • 송현준 (숭실대학교 정보통신소재융합학과) ;
  • 정영진 (숭실대학교 정보통신소재융합학과)
  • Received : 2020.07.31
  • Accepted : 2020.08.25
  • Published : 2020.08.31

Abstract

With the development of wireless technology, it has become necessary to protect information technology devices from electromagnetic interference with electromagnetic-shielding materials. In this study, an electromagnetic-shielding material was prepared using a carbon nanotube (CNT) sheet electroplated with copper. The copper electroplating on the CNT sheet improved the electrical conductivity of the CNT sheet, which increased the overall shielding effectiveness (SE). The SE was evaluated using a vector network analyzer. The measured SE of the raw CNT sheet was 37.84 dB, and the SE of the composite sheet electroplated with copper increased to 83.9 dB, which was comparable to that of pure copper. Additionally, the composite sheet showed a high SE per unit thickness of 5412.72 dB/mm. Therefore, this study serves a reference for the improved development of thin light materials via copper electroplating on CNT sheets for electromagnetic-interference shielding.

Keywords

Acknowledgement

본 연구는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NO. NRF-2020R1A2C2006720).

References

  1. M. Shafi, A. F. Mansoor, and P. J. Smith, "5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice", IEEE Journal on Selected Areas in Communications, 2017, 35, 1201-1221. https://doi.org/10.1109/JSAC.2017.2692307
  2. Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, "False Data Injection Attacks Against State Estimation in Wireless Sensor Networks", 49th IEEE Conference on Decision and Control (CDC), 2010, pp.5967-5972.
  3. M. B. M. Noor and W. H. Hassan, "Current Research on Internet of Things (IoT) Security: A Survey", Computer Networks, 2019, 148, 283-294. https://doi.org/10.1016/j.comnet.2018.11.025
  4. M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, "Internet of Things (IoT): Research, Simulators, and Testbeds", IEEE Internet of Things Journal, 2018, 5, 1637-1647. https://doi.org/10.1109/jiot.2017.2786639
  5. I. Lee and K. Lee, "The Internet of Things (IoT): Applications, Investments, and Challenges for Enterprises", Business Horizons, 2015, 58, 431-440. https://doi.org/10.1016/j.bushor.2015.03.008
  6. L. Ma, Z. Lu, J. Tan, J. Liu, X. Ding, N. Black, T. Li, J. Gallop, and L. Hao, "Transparent Conducting Graphene Hybrid Films to Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene", ACS Appl. Mater. Interfaces, 2017, 9, 34221-34229. https://doi.org/10.1021/acsami.7b09372
  7. M. Bayat, H Yang, F. K Ko, D. Michelson, and A. Mei, "Electromagnetic Interference Shielding Effectiveness of Hybrid Multifunctional Fe3O4/carbon Nanofiber Composite", Polymer, 2014, 55, 936-943. https://doi.org/10.1016/j.polymer.2013.12.042
  8. D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R. Wei, A. Subramania, and Z. Guo, "Electromagnetic Interference Shielding Polymers and Nanocompositesea Review", Polym. Rev., 2019, 59, 280-337. https://doi.org/10.1080/15583724.2018.1546737
  9. J. Li, H. Huang, Y. Zhou, C. Zhang, and Z. Li, "Research Progress of Graphene-based Microwave Absorbing Materials in the Last Decade", J. Mater. Res., 2017, 32, 1213-1230. https://doi.org/10.1557/jmr.2017.80
  10. Y. Wang and X. Jing, "Intrinsically Conducting Polymers for Electromagnetic Interference Shielding", Polym. Adv. Technol., 2005, 16, 344-351. https://doi.org/10.1002/pat.589
  11. A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, "Scenarios for 5G Mobile and Wireless Communications: the Vision of the METIS Project", IEEE Communications Magazine, 2014, 52, 26-35.
  12. P. Kumar, U. Narayan Maiti, A. Sikdar, T. K. Das, A. Kumar, and V. Sudarsan, "Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects", Polym. Rev., 2019, 59, 687-738. https://doi.org/10.1080/15583724.2019.1625058
  13. S. Shinagawa, Y. Kumagai, and K. Urabe, "Conductive Papers Containing Metallized Polyester Fibers for Electromagnetic Interference Shielding", J. Porous Mater., 1999, 6, 185-190. https://doi.org/10.1023/A:1009619711017
  14. J. Wu and D. D. L. Chung, "Combined Use of Magnetic and Electrically Conductive Fillers in a Polymer Matrix for Electromagnetic Interference Shielding", J. Electron. Mater., 2008, 37, 1088. https://doi.org/10.1007/s11664-008-0486-4
  15. M. Gonzalez, J. Pozuelo, and J. Baselga, "Electromagnetic Shielding Materials in GHz Range", The Chemical Record, 2018, 18, 1000. https://doi.org/10.1002/tcr.201700066
  16. Y. Yang, M. C. Gupta, and K. L. Dudley, "Studies on Electromagnetic Interference Shielding Characteristics of Metal Nanoparticle- and Carbon Nanostructure-filled Polymer Composites in the Ku-band Frequency", Micro & Nano Letters, 2007, 2, 85-89. https://doi.org/10.1049/mnl:20070042
  17. Y. Kato, M. Horibe, S. Ata, T. Yamada, and K. Hata, "Stretchable Electromagnetic-interference Shielding Materials Made of a Long Single-walled Carbon-nanotube-elastomer Composite", RSC Adv., 2017, 7, 10841-10847. https://doi.org/10.1039/C6RA25350D
  18. Q. Song, F. Ye, H. Li, Y. Liu, L. Cheng, and B. Wei, "Carbon Nanotube-Multilayered Graphene Edge Plane Core-Shell Hybrid Foams for Ultrahigh-Performance Electromagnetic-Interference Shielding", Adv. Mater., 2017, 29, 1701583. https://doi.org/10.1002/adma.201701583
  19. Y. Li, B. Shen, X. Pei, Y. Zhang, D. Yi, and W. Zheng, "Ultrathin Carbon Foams for Effective Electromagnetic Interference Shielding", Carbon, 2016, 100, 375-385. https://doi.org/10.1016/j.carbon.2016.01.030
  20. D. Lu, Z. Mo, and X. Gui, "Flexible, Lightweight Carbon Nanotube Sponged and Composites for High-performance Electromagnetic Interference Shielding", Carbon, 2018, 133, 457-463. https://doi.org/10.1016/j.carbon.2018.03.061
  21. C.-Y. Huang, W.-W. Mo, and M.-L. Roan, "Studies on the Influence of Double-layer Electroless Metal Deposition on the Electromagnetic Interference Shielding Effectiveness of Carbon Fiber/ABS Composites", Surf. Coat. Technol., 2004, 184, 163-169. https://doi.org/10.1016/j.surfcoat.2003.11.010
  22. Y. Yang, M. C. Gupta, K. L. Dudley, and R. W. Lawrence, "Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic Interference Shielding", Nano Lett., 2005, 5, 2131-2134. https://doi.org/10.1021/nl051375r
  23. M. H. Al-Saleh, W. H. Saadeh, and U. Sundararaj, "EMI Shielding Effectiveness of Carbon Based Nanostructured Polymeric Materials: A Comparative Study", Carbon, 2013, 60, 146-156. https://doi.org/10.1016/j.carbon.2013.04.008
  24. B.-W. Li, Y. Shen, Z.-X. Yue, and C.-W. Nan, "Enhanced Microwave Absorption in Nickel/hexagonal-ferrite/polymer Composites", Appl. Phys. Lett., 2006, 89, 132504. https://doi.org/10.1063/1.2357565
  25. S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, "Complex Permittivity, Complex Permeability and Microwave Absorption Properties of Ferrite-polymer Composites", J. Magn. Magn. Mater., 2007, 309, 20-24. https://doi.org/10.1016/j.jmmm.2006.06.006
  26. A. Verma, A. K. Saxena, and D. C. Dube, "Microwave Permittivity and Permeability of Ferrite-polymer Thick Films", J. Magn. Magn. Mater., 2003, 263, 228-234. https://doi.org/10.1016/S0304-8853(02)01569-X
  27. L. Ma, Z. Lu, J. Tan, J. Liu, X. Ding, N. Black, T. Li, J. Gallop, and L. Hao, "Improved Electromagnetic Shielding Performance of Lightweight Compression Molded Polypyrrole/Ferrite Composite Sheets", ACS Appl. Mater. Interfaces, 2017, 9, 34221-34229. https://doi.org/10.1021/acsami.7b09372
  28. C. Li, E. T. Thostenson, and T.-W. Chou, "Dominant Role of Tunneling Resistance in the Electrical Conductivity of Carbon Nanotube-based Composites", Appl. Phys. Lett., 2007, 91, 223114. https://doi.org/10.1063/1.2819690
  29. R. Haggenmueller, C. Guthy, J. R. Lukes, J. E. Fischer, and K. I. Winey, "Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Thermal and Electrical Conductivity", Macromolecules, 2007, 40, 2417-2421. https://doi.org/10.1021/ma0615046
  30. Z. Wang, L. Wu, J. Zhou, W. Cai, B. Shen, and Z. Jiang, "Magnetite Nanocrystals on Multiwalled Carbon Nanotubes as a Synergistic Microwave Absorber", J. Phys. Chem. C, 2013, 117, 5446-5452. https://doi.org/10.1021/jp4000544
  31. K. Hayashida and Y. Matsuoka, "Electromagnetic Interference Shielding Properties of Polymer-grafted Carbon Nanotube Composites with High Electrical Resistance", Carbon, 2015, 85, 363-371. https://doi.org/10.1016/j.carbon.2015.01.006
  32. H. M. Kim, K Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, "Electrical Conductivity and Electromagnetic Interference Shielding of Multiwalled Carbon Nanotube Composites Containing Fe Catalyst", Appl. Phys. Lett., 2004, 84, 589. https://doi.org/10.1063/1.1641167
  33. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, "Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites", Nano Lett., 2006, 6, 1141-1145. https://doi.org/10.1021/nl0602589
  34. J.-S. Roh, Y.-S. Chi, T. Jin, and S. Nam, "Electromagnetic Shielding Effectiveness of Multifunctional Metal Composite Fabrics", Text. Res. J., 2008, 78, 825-835. https://doi.org/10.1177/0040517507089748
  35. Z. Wang, B. Y. Mao, Q. L. Wang, J. Yu, J. X. Dai, R. G. Song, Z. H. Pu, D. P. He, Z. Wu, and S. C. Mu, "Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness", Small, 2018, 14, 1704332. https://doi.org/10.1002/smll.201704332
  36. S. Geetha, K. K. Satheesh Kumar, C. R. K. Rao, M. Vijayan, and D. C. Trivedi, "EMI Shielding: Methods and Materials-A Review", J. Appl. Polym. Sci., 2009, 112, 2073-2086. https://doi.org/10.1002/app.29812
  37. M. Abdullah Dar, K. Majid, M. Hanief Najar, R. K. Kotnala, J. Shah, S. K. Dhawan, and M. Fraukh, "Surfactant-assisted Synthesis of Polythiophene/$Ni_{0.5}Zn_{0.5}Fe_{2-x}Ce_xO_{4}$ Ferrite Composites: Study of Structural, Dielectric and Magnetic Properties for EMI-shielding Applications", Royal Society of Chemistry, 2017, 19, 10629-10643.
  38. B. Shen, Y. Li, D. Yi, and W. Zheng, "Microcellular Graphene Foam for Improved Broadband Electromagnetic Interference Shielding", Carbon, 2016, 102, 154-160. https://doi.org/10.1016/j.carbon.2016.02.040
  39. S. Naeem, V. Baheti, V. Tunakova, J. Militky, D. Karthik, and B. Tomkova, "Development of Porous and Electrically Conductive Activated Carbon Wab for Effective EMI Shielding Applications", Carbon, 2017, 111, 439-447. https://doi.org/10.1016/j.carbon.2016.10.026
  40. Y. Liu, J. Zeng, K. Wu, and Q. Fu, "Graphene Enhanced Flexible Expanded Graphite Film With High Electric, Thermal Conductivities and EMI Shielding at Low Content", Carbon, 2018, 133, 435-445. https://doi.org/10.1016/j.carbon.2018.03.047
  41. L. Paliotta, G. De Bellis, and M. S. Sarto, "Highly Conductive Multilayer-graphene Paper as a Flexible Lightweight Electromagnetic Shield", Carbon, 2015, 89, 260-271. https://doi.org/10.1016/j.carbon.2015.03.043
  42. J. Liu, H. B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z. Z. Yu, "Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding", Adv. Mater., 2017, 29, 1702367. https://doi.org/10.1002/adma.201702367