References
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. https://doi.org/10.1007/s00707-013-0883-5
- Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear Vibration Analysis of Piezoelectric Plates Reinforced with Carbon Nanotubes Using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
- Aridogan, U., Basdogan, I. and Erturk, A. (2014), "Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate", Smart Mater. Struct., 23(4), 045039. https://doi.org/10.1088/0964-1726/23/4/045039
- Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133
- Arul, K.T., Ramanjaneyulu, M. and Ramachandra Rao, M.S. (2019), "Energy Harvesting of PZT/PMMA Composite Flexible Films", Curr. Appl. Phys., 19(4), 375-380. https://doi.org/10.1016/j.cap.2019.01.003
- Balamurugan, V. and Narayanan, S. (2009), "Multilayer Higher Order Piezo-Laminated Smart Composite Shell Finite Element and Its Application to Active Vibration Control", J. Intell. Mater. Syst. Struct., 20(4), 425-441. https://doi.org/10.1177/1045389X08095269
- Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
- Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A. ., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/jnanor.57.175
- Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., Int. J., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643
- Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351
- Biswal, A.R., Roy, T. and Behera, R.K. (2017), "Optimal Vibration Energy Harvesting from Non-Prismatic Axially Functionally Graded Piezolaminated Cantilever Beam Using Genetic Algorithm", J. Intell. Mater. Syst. Struct., 28(14), 1957-1976. https://doi.org/10.1177/1045389X16682842
- Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., Int. J., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503
- Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191
- Calio, R., Rongala, U.B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G. and Oddo, C.M. (2014), "Piezoelectric Energy Harvesting Solutions", Sensors, 14(3), 4755-4790. https://doi.org/10.3390/s140304755
- Civalek, O. and Akgoz, B. (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752
- Dagdeviren, C., Yang, B.D., Su, Y., Tran, P.L., Joe, P., Anderson, E., Xia, J., Doraiswamy, V., Dehdashti, B., Feng, X., Lu, B., Poston, R., Khalpey, Z., Ghaffari, R., Huang, Y., Slepian, M.J. and Rogers, J.A. (2014), "Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm", Proceedings of the National Academy of Sciences, 111(5), 1927-1932. https://doi.org/10.1073/pnas.1317233111
- Dash, P. and Singh, B.N. (2009), "Nonlinear free vibration of piezoelectric laminated composite plate", Finite Elem. Anal. Des., 45(10), 686-694. https://doi.org/10.1016/j.finel.2009.05.004
- Dechant, E., Fedulov, F., Fetisov, L.Y. and Shamonin, M. (2017), "Bandwidth widening of piezoelectric cantilever beam arrays by mass-tip tuning for low-frequency vibration energy harvesting", Appl. Sci., 7(12). https://doi.org/10.3390/app7121324
- Dutoit, N.E., Brian L.W. and Kim, S.G. (2005), "Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters", Integr. Ferroelectr., 71(1), 121-160. https://doi.org/10.1080/10584580590964574
- Erturk, A. and Inman, D.J. (2008), "A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters", J. Vib. Acoust., 130(4), 041002. https://doi.org/10.1115/1.2890402
- Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18(2). https://doi.org/10.1088/0964-1726/18/2/025009
- Glynne-Jones, P., Tudor, M.J., Beeby, S.P. and White, N.M. (2004), "An electromagnetic, vibration-powered generator for intelligent sensor systems", Sensors Actuators A Phys., 110(1-3), 344-349. https://doi.org/10.1016/j.sna.2003.09.045
- Himanshu, P. (2013), "Piezoelectric Transduction Mechanism for Vibration Based Energy Harvesting", NITR M.Tech Thesis; NIT Rourkela, pp. 1-72.
- Hung, E.S. and Senturia, S.D. (1999), "Extending the travel range of analog-tuned electrostatic actuators", J. Microelectromech. Syst, 8(4), 497-505. https://doi.org/10.1109/84.809065
- Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431
- Josefsson, A. (2014), An Early Product Development Project at a Start-up Company.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, Int. J., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037
- Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Compos., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
- Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055
- Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019c), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
- Karami, B., Janghorban, M. and Tounsi, A. (2019d), "On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487
- Karami, B., Janghorban, M. and Tounsi, A. (2019e), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J Braz. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0
- Khalatkar, A., Gupta, V.K. and Agrawal, A. (2014), "Analytical, FEA, and experimental comparisons of piezoelectric energy harvesting using engine vibrations", Smart Mater. Res., 1-8. https://doi.org/10.1155/2014/741280
- Kim, H.W., Priya, S., Uchino, K. and Newnham, R.E. (2005), "Piezoelectric Energy Harvesting under High Pre-Stressed Cyclic Vibrations", J. Electroceram., 15(1), 27-34. https://doi.org/10.1007/s10832-005-0897-z
- Kim, J.E., Kim, H., Yoon, H., Kim, Y.Y. and Youn, B.D. (2015), "An Energy conversion model for cantilevered piezoelectric vibration energy harvesters using only measurable parameters", Int. J. of Precis. Eng. Manuf.-Green Tech., 2, 51-57. https://doi.org/10.1007/s40684-015-0007-x
- Kong, L.B., Li, T., Hng, H.H., Boey, F., Zhang, T. and Li, S. (2014), Waste Energy Harvesting, (Vol. 24), Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, Germany.
- Kundu, S. and Nemade, H.B. (2016), "Modeling and simulation of a piezoelectric vibration energy harvester", Procedia Eng., 144, 568-575. https://doi.org/10.1016/j.proeng.2016.05.043
- Li, X., Bhushan, B., Takashima, K., Baek, C.-W. and Kim, Y.-K. (2003), "Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques", Ultramicroscopy, 97(1-4), 481-494. https://doi.org/10.1016/S0304-3991(03)00077-9
- Li, H., Tian, C. and Deng, Z.D. (2014), "Energy harvesting from low frequency applications using piezoelectric materials", Appl. Phys. Rev., 1(4), 041301. https://doi.org/10.1063/1.4900845
- Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E.M., Holmes, A.S. and Green, T.C. (2004), "MEMS Electrostatic Micropower Generator for Low Frequency Operation", Sensors Actuat. A Phys., 115(2-3), 523-529. https://doi.org/10.1016/j.sna.2004.04.026
- Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S. and Green, T.C. (2008), "Energy harvesting from human and machine motion for wireless electronic devices", Proc. IEEE, 96(9), 1457-1486. https://doi.org/10.1109/JPROC.2008.927494
- Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, E.A.A. and Mahmoud, S.R. (2017), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577
- Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017), "Geometrical Nonlinear Free Vibration Responses of FG-CNT Reinforced Composite Annular Sector Plates Integrated with Piezoelectric Layers", Compos. Struct., 171, 100-112. https://doi.org/10.1016/j.compstruct.2017.01.048
- Moser, Y. and Gijs, M.A.M. (2007), "Miniaturized Flexible Temperature Sensor", J. Microelectromech. Syst., 16(6), 1349-1354. https://doi.org/10.1109/JMEMS.2007.908437
- Motezaker, M. and Eyvazian, E. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., Int. J., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289
- Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J Computat. Appl. Mathe., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625
- Muralt, P., Marzencki, M., Belgacem, B., Calame, F. and Basrour, S. (2009), "Vibration energy harvesting with PZT micro device", Procedia Chem., 1(1), 1191-1194. https://doi.org/10.1016/j.proche.2009.07.297
- Najini, H. and Muthukumaraswamy, S.A. (2017), "Piezoelectric energy generation from vehicle traffic with technoeconomic analysis", J. Renew. Energy, 1-16. https://doi.org/10.1155/2017/9643858
- Othman, A. (2017), "Modeling of piezoelectric energy harvesting system embedded in soldier's boot using Matlab/Simulink", Proceedings of 2017 International Conference on Military Technologies (ICMT), pp. 787-792. https://doi.org/10.1109/MILTECHS.2017.7988862
- Panda, P.K., Sahoo, B., Ramakrishna, J., Manoj, B. and Prasada Rao, D.S.D. (2018), "Recent Studies on Vibrational Energy Harvesting of PZT Materials", Mater. Today Proc., 5(10), 21512-21516. https://doi.org/10.1016/j.matpr.2018.06.562
- Park, J., Lee, S. and Kwak, B.M. (2012), "Design optimization of piezoelectric energy harvester subject to tip excitation", J. Mech. Sci. Technol., 26(1), 137-143. https://doi.org/10.1007/s12206-011-0910-1
- Rafiee, M., Mohammadi, M., Aragh, B.S. and Yaghoobi, H. (2013), "Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells, Part II: Numerical results", Compos. Struct., 103, 188-196. https://doi.org/10.1016/j.compstruct.2012.12.050
- Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, Int. J., 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225
- Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018
- Roundy, S., Wright, P.K. and Rabaey, J. (2003), "A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11), 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
- Sahla, Meriem., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., Int. J., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663
- Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
- Shen, D., Park, J.-H., Noh, J.H., Choe, S.-Y., Kim, S.-H., Wikle, H.C. and Kim, D.-J. (2009), "Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting", Sensors Actuators A Phys., 154(1), 103-108. https://doi.org/10.1016/j.sna.2009.06.007
- Shu, Y.C. and Lien, I.C. (2006), "Analysis of power output for piezoelectric energy harvesting systems", Smart Mater. Struct., 15(6), 1499. https://doi.org/10.1088/0964-1726/15/6/001
- Shutao, P., Zheng X., Jing, S., Yong, Z., Liang, Z., Jihe, Z., Deng S., Mingfang, C., Wei, X. and Ke, P. (2012), "Modeling of a micro-cantilevered piezo-actuator considering the buffer layer and electrodes", J. Micromech. Microeng., 22(6). https://doi.org/10.1088/0960-1317/22/6/065005
- Singh, V.K. and Panda, S.K. (2017), "Geometrical nonlinear free vibration analysis of laminated composite doubly curved shell panels embedded with piezoelectric layers", J. Vib. Control, 23(13), 2078-2093. https://doi.org/10.1177/1077546315609988
- Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear Transient Analysis of Smart Laminated Composite Plate Integrated with PVDF Sensor and AFC Actuator", Compos. Struct., 157, 121-130. https://doi.org/10.1016/j.compstruct.2016.08.020
- Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, Int. J., 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245
- Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech, Int. J., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637
- Williams, C.B. and Yates, R.B. (1996), "Analysis of a micro-electric generator for microsystems", Sensors Actuators A Phys., 52(1-3), 8-11. https://doi.org/10.1016/0924-4247(96)80118-X
- Yang, B. (2010), "Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms", J. Micro/Nanolithogr. MEMS, MOEMS, 9(2), 023002. https://doi.org/10.1117/1.3373516
- Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B: Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051
- Zeng, S., Zhang, C., Wang, K., Wang, B. and Sun, L. (2018), "Analysis of delamination of unimorph cantilever piezoelectric energy harvesters", J. Intell. Mater. Syst. Struct., 29(9), 1875-1883. https://doi.org/10.1177/1045389X17754273
- Zhu, M., Worthington, E. and Njuguna, J. (2009), "Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method", IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56(7), 1309-1317. https://doi.org/10.1109/TUFFC.2009.1187
Cited by
- Complex bursting dynamics of a Mathieu-van der Pol-Duffing energy harvester vol.96, pp.1, 2021, https://doi.org/10.1088/1402-4896/abcad1