과제정보
이 연구는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원에 의한 결과의 일부임. 과제번호:NRF-2018R1A2B2005528
참고문헌
- Bae, W. k., Kim, H. J., & Kwon, G. O. (2009). A Study on the Relationship between Land Use Patterns and Crime Rates - Focused on the Bundang Newtown in 2006, Journal of the Urban Design Institute of Korea Urban Design, 10(4), 5-20
- Birch, C. P., Oom, S. P., & Beecham, J. A. (2007). Rectangular and hexagonal grids used for observation, experiment and simulation in ecology, Ecological modelling, 206(3-4), 347-359. https://doi.org/10.1016/j.ecolmodel.2007.03.041
- Brantingham, P. J., & Brantingham, P. L. (1981). Environmental criminology, Beverly Hills, CA: Sage Publications, pp. 27-54.
- Buczak, A. L., & Gifford, C. M. (2010). Fuzzy association rule mining for community crime pattern discovery, In ACM SIGKDD Workshop on Intelligence and Security Informatics, 1-10.
- Chandra, B., Gupta, M., & Gupta, M. P. (2008). A multivariate time series clustering approach for crime trends prediction, In 2008 IEEE International Conference on Systems, Man and Cybernetics, 892-896.
- Chang, L.F., Feng, W. T., & Su, M. D. (2007). Grid-based Socioeconomic Database For Exposure Estimation in Flooding Risk Analysis, Water Management and Climate Change Towards Asia's Water-Energy-Food Nexus, 25-27.
- Chen, H., Chung, W., Xu, J. J., Wang, G., Qin, Y., & Chau, M. (2004). Crime data mining: a general framework and some examples, computer, 37(4), 50-56. https://doi.org/10.1109/MC.2004.1297301
- Cohen, L., E., & Felson, M. (1979). Social change and crime rate trends: A routine activity approach, American Sociological Review, 44:588-608. https://doi.org/10.2307/2094589
- Dzemydiene, D., & Rudzkiene, V. (2002). Multiple regression analysis in crime pattern warehouse for decision support, In International Conference on Database and Expert Systems Applications, 249-258.
- Eck, J., & Weisburd, D. L. (2015). Crime places in crime theory, Crime and place: Crime prevention studies, 4.
- Hwang, J. T. (2004). A Study on Target Selection of Burglars, Robbers and Thieves, Korean Institute of Criminology, 17-247.
- Huang, Z. (1997). A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining, In Research Issues on Data Mining and Knowledge Discovery, 281-297.
- Jung, M. W., & Kim, S. P. (1997). A Study on the Crime Occurrence and Environment Characteristics in Residential Area, Journal of the Architectural Institute of Korea, 13(3), 69-76.
- Kim, B. H., & Kim, K. S. (2002). General Research Papers : Improvements of K - modes Algorithm and ROCK Algorithm, The Korean Journal of Applied Statistics, 15, 81-393.
- Kim, D. K., Yoon, Y. J., & Ahn, K. H. (2007). A Study on Urban Crime in Relation to Land Use Patterns, Journal of Korea Planning Association, 42(7), 155-168.
- Kim, M. S., & Lee, J. Y. (2015). A Data Transformation Method for Visualizing the Statistical Information based on the Grid, Journal of Korea Spatial Information Society, 23(5), 31-40. https://doi.org/10.12672/ksis.2015.23.5.031
- Kwak, M. S., Kwon, J. J., & Sung, H. G. (2017). Impacts of Urban Physical Environment on Crime Incidence by its type and time, Journal of Korea Planning Association, 52(4), 225-236. https://doi.org/10.17208/jkpa.2017.08.52.4.225
- Lee, H. I., & Kim, K. M. (2013). Spatial pattern analysis of urban crime in Seoul Metropolitan Area, Korean Journal of Public Safety and Criminal Justice, 22(4), 217-246.
- Lee, K. J., Kim, Y. J., & Hong, S. J. (2015). An Empirical Study on Exploration of Spatial Association between Crime and Land Use, Journal of the Korean Urban Management Association, 28(4), 245-267.
- Lee, S. W., & Cho, J. K. (2006). The Effects of Spatial and Environmental Factors on Crime Victimization, The Seoul Studies, 7(2), 57-76.
- Liu, H., & Brown, D. E. (2003). Criminal incident prediction using a point-pattern-based density model, International journal of forecasting, 19(4), 603-622. https://doi.org/10.1016/S0169-2070(03)00094-3
- MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations, In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1(14), 281-297.
- Mancini, F., Ceppi, C., & Ritrovato, G. (2010). GIS and statistical analysis for landslide susceptibility mapping in the Daunia area (Italy), Natural Hazards and Earth System Sciences (NHESS), ISSN 1561-8633, 10, 1851-1864. https://doi.org/10.5194/nhess-10-1851-2010
- Nakaya, T., & Yano, K. (2010). Visualising crime clusters in a space-time cube: An exploratory dataanalysis approach using space-time kernel density estimation and scan statistics, Transactions in GIS, 14(3), 223-239. https://doi.org/10.1111/j.1467-9671.2010.01194.x
- Park, M. K. (2003). Implementation of Crime Prediction Map Using Space Analysis of GIS: A Case Study of Seongbuk-gu, Seoul, Kyung Hee University.
- Seok, J. H., & Hyae, J. B. (2017). A Study on the Correlation between The Wall Removal and Crime Prevention Through Environmental Design Considering Improvement of Residential Environment - Focusing on Sungdae Valley -, Journal of The Korean Society of Living Environmental System, 24(6), 858-864. https://doi.org/10.21086/ksles.2017.12.24.6.858
- Shaw, C. R., & McKay, H. D. (1942). Juvenile delinquency and urban areas, University of Chicago Press.
- Shu, C. F., Hampapur, A., Lu, M., Brown, L., Connell, J., Senior, A., & Tian, Y. (2005). IBM smart surveillance system (S3): a open and extensible framework for event based surveillance, In IEEE Conference on Advanced Video and Signal Based Surveillance, 318-323.
- Stucky, T. D., & Ottensmann, J. R. (2009). Land use and violent crime. Criminology, 47(4), 1223-1264. https://doi.org/10.1111/j.1745-9125.2009.00174.x
- Yu, C. H., Ward, M. W., Morabito, M., & Ding, W. (2011). Crime forecasting using data mining techniques., IEEE 11th international conference on data mining workshops, 779-786.