DOI QR코드

DOI QR Code

A Fuzzy Rule-based System for Automatically Generating Customized Training Scenarios in Cyber Security

  • 투고 : 2020.05.04
  • 심사 : 2020.08.19
  • 발행 : 2020.08.31

초록

최근에 사이버 보안에 대한 관심이 많이 증가함에도 불구하고 신기술들의 등장으로 사이버 보안을 효율적으로 수행할 전문적인 인력이 부족한 실정이다. 사이버 보안 전문인력 양성을 위해 사이버 레이지와 같은 다양한 방법이 활용하고 있음에도 가상훈련 시스템의 한계성, 시나리오 기반의 실습 콘텐츠 개발과 운용상, 단위 콘텐츠 중심 개발, 학습자 수준 고려 부족의 문제점이 있다. 본 논문에서는 사이버보안 훈련체계 사용자의 침해대응 능력을 향상하는 목적으로 퍼지 규칙 기반의 사용자 맞춤형 훈련 시나리오 자동 생성 시스템을 개발한다. 제안하는 시스템은 퍼지 규칙을 따라 지능형 지속 위협 기반으로 시나리오를 생성하고 제공한다. 그리하여 제안 시스템은 생성된 시나리오를 통해 훈련생의 침해 대응 능력을 향상시킬 수 있다.

Despite the increasing interest in cyber security in recent years, the emergence of new technologies has led to a shortage of professional personnel to efficiently perform the cyber security. Although various methods such as cyber rage are being used to cultivate cyber security experts, there are problems of limitation of virtual training system, scenario-based practice content development and operation, unit content-oriented development, and lack of consideration of learner level. In this paper, we develop a fuzzy rule-based user-customized training scenario automatic generation system for improving user's ability to respond to infringement. The proposed system creates and provides scenarios based on advanced persistent threats according to fuzzy rules. Thus, the proposed system can improve the trainee's ability to respond to the bed through the generated scenario.

키워드

참고문헌

  1. Joint Publication 3-12, "Cyberspace Operations," 8 June 2019
  2. Whitehouse.gov, "The National Cyber Range," Whitehouse, 2009. [Online]. Available: https://obamawhitehouse.archives.gov/files/documents/cyber/DARPA - NationalCyberRange_FactSheet.pdf.
  3. D. Kim and Y. Kim, "A Study of Administration of Cyber Range," J. Internet Comput. Serv., vol. 18, no. 5, pp. 9-15, 2017. https://doi.org/10.7472/jksii.2017.18.5.09
  4. Yong Goo Kang, Jeong Do Yoo, Eunji Pa가, Dong Hwa Kim, and Hyu Kang Kim, "Design and Implementation of Cyber Attack Simulator based on Attack Techniques Modeling," Jounrnal of The Korea Society of Computer and Information, Vol. 25, No. 3, pp. 65-72, March 2020.
  5. H. Y. Lee, Y. S. Park, J. M. Ryoo, T. Korea, and S. For, "Generation of Random Virtual Environments for Cyber Kill Chain Training," in The Korea Society For Simulation, 2018, pp. 15-18.
  6. Z. C. Schreuders, T. Shaw, M. Shan-A-Khuda, G. Ravichandran, J. Keighley, and M. Ordean, "Security Scenario Generator (SecGen): A Framework for Generating Randomly Vulnerable Rich-scenario VMs for Learning Computer Security and Hosting CTF Events," in 2017 USENIX$ Workshop on Advances in Security Education (ASE), 2017.
  7. W. Feng, "A Scaffolded, Metamorphic CTF for Reverse Engineering," in 2015 USENIX Summit on Gaming, Games, and Gamification in Security Education (3GSE), 2015.
  8. J. Burket, P. Chapman, T. Becker, C. Ganas, and D. Brumley, "Automatic problem generation for capture-the-flag competitions," in 2015 USENIX Summit on Gaming, Games, and Gamification in Security Education (3GSE), 2015.
  9. DuDuIT, "Cyber-hacking response training system." [Online]. Available: http://duduit.co.kr.
  10. Y. S. Park, J. M. Yyoo, H. Y. Lee, "Virtualization-based training content delivery system". Kor. Patent No. 10-2020-0023934, 2020.
  11. J. Park, S. Yeom, S. Nam, D. Shin, and D. Shin, "Scenario-based Cyber Attack / Defense Education System Using Virtual Machine," 2019 Korean Society For Internet Information Conference, 2019.
  12. D. Moon, H. Lee, and I. Kim, "Host based Feature Description Method for Detecting APT Attack-APT," Journal of The Korea Institute of Information Security and Cryptology (JKIISC), vol. 24, no. 5, pp. 839-850, 2014. DOI: 10.13089/JKIISC.2014.24.5.839
  13. S. Nam, J. Ryoo, and Y. Park, "Virtual training system for checking user account and detecting unauthorized account access to counter cyber attacks," 2019 Korea Convergence Security Association Conference, Oct. 2019.
  14. S. M. Nam, Y. S. Park, "Cyber Security Simulated Training System and Cyber Aegis", Bookk, Feb. 2020.
  15. J. Noh, D. Shin, and D. Shin, "Automated Classification by Efficient Learner Level based on Machine Learning," 2019 Korean Society for Internet Information Conference, Nov. 2019.
  16. R. Babuska, "Fuzzy systems, modeling and identification," Delft Univ. Technol. Dep. Electr. Eng. Control Lab. Mekelweg, vol. 4, 1996.
  17. S. H. Chi and T. H. Cho, "Fuzzy logic based propagation limiting method for message routing in wireless sensor networks," in International Conference on Computational Science and Its Applications, 2006, pp. 58-67.